Goto

Collaborating Authors

Spatial and anatomical regularization of SVM for brain image analysis

Neural Information Processing Systems

Support vector machines (SVM) are increasingly used in brain image analyses since they allow capturing complex multivariate relationships in the data. Moreover, when the kernel is linear, SVMs can be used to localize spatial patterns of discrimination between two groups of subjects. However, the features' spatial distribution is not taken into account. As a consequence, the optimal margin hyperplane is often scattered and lacks spatial coherence, making its anatomical interpretation difficult. This paper introduces a framework to spatially regularize SVM for brain image analysis.


Spatial and anatomical regularization of SVM for brain image analysis

Neural Information Processing Systems

Support vector machines (SVM) are increasingly used in brain image analyses since they allow capturing complex multivariate relationships in the data. Moreover, when the kernel is linear, SVMs can be used to localize spatial patterns of discrimination between two groups of subjects. However, the features' spatial distribution is not taken into account. As a consequence, the optimal margin hyperplane is often scattered and lacks spatial coherence, making its anatomical interpretation difficult. This paper introduces a framework to spatially regularize SVM for brain image analysis. We show that Laplacian regularization provides a flexible framework to integrate various types of constraints and can be applied to both cortical surfaces and 3D brain images. The proposed framework is applied to the classification of MR images based on gray matter concentration maps and cortical thickness measures from 30 patients with Alzheimer's disease and 30 elderly controls. The results demonstrate that the proposed method enables natural spatial and anatomical regularization of the classifier.


Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis

Neural Information Processing Systems

Diagnosis of Alzheimer's disease (AD) at the early stage of the disease development is of great clinical importance. Current clinical assessment that relies primarily on cognitive measures proves low sensitivity and specificity. The fast growing neuroimaging techniques hold great promise. Research so far has focused on single neuroimaging modalities. However, as different modalities provide complementary measures for the same disease pathology, fusion of multi-modality data may increase the statistical power in identification of disease-related brain regions.


A Universal Analysis of Large-Scale Regularized Least Squares Solutions

Neural Information Processing Systems

A problem that has been of recent interest in statistical inference, machine learning and signal processing is that of understanding the asymptotic behavior of regularized least squares solutions under random measurement matrices (or dictionaries). The Least Absolute Shrinkage and Selection Operator (LASSO or least-squares with $\ell_1$ regularization) is perhaps one of the most interesting examples. Precise expressions for the asymptotic performance of LASSO have been obtained for a number of different cases, in particular when the elements of the dictionary matrix are sampled independently from a Gaussian distribution. It has also been empirically observed that the resulting expressions remain valid when the entries of the dictionary matrix are independently sampled from certain non-Gaussian distributions. In this paper, we confirm these observations theoretically when the distribution is sub-Gaussian. We further generalize the previous expressions for a broader family of regularization functions and under milder conditions on the underlying random, possibly non-Gaussian, dictionary matrix. In particular, we establish the universality of the asymptotic statistics (e.g., the average quadratic risk) of LASSO with non-Gaussian dictionaries.


New Way of Defining Alzheimer's Aims to Find Disease Sooner

U.S. News

Another problem: as many as 30 percent of people enrolled in Alzheimer's studies based on symptoms didn't actually have the disease -- they had other forms of dementia or even other medical conditions. That doesn't give an accurate picture of whether a potential treatment might help, and the new definition aims to improve patient selection by using brain scans and other tests.