A Dual Framework for Low-rank Tensor Completion

Neural Information Processing Systems

One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.


A dual framework for trace norm regularized low-rank tensor completion

arXiv.org Machine Learning

One of the popular approaches for low-rank tensor completion is to use the latent trace norm as a low-rank regularizer. However, most of the existing works learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm which helps to learn a non-sparse combination of tensors. We develop a dual framework for solving the problem of latent trace norm regularized low-rank tensor completion. In this framework, we first show a novel characterization of the solution space with a novel factorization, and then, propose two scalable optimization formulations. The problems are shown to lie on a Cartesian product of Riemannian spectrahedron manifolds. We exploit the versatile Riemannian optimization framework for proposing computationally efficient trust-region algorithms. The experiments show the good performance of the proposed algorithms on several real-world data sets in different applications.


Efficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm

AAAI Conferences

Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and space-efficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the Frank-Wolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular,FW's linear subproblem has a closed-form solution which can be obtained from rank-one SVD. By utilizing sparsity of the observed tensor,we only need to maintain sparse tensors and a set of small basis matrices. Experimental results show that the proposed algorithm is more accurate, much faster and more scalable than the state-of-the-art.


Structured low-rank matrix learning: algorithms and applications

arXiv.org Machine Learning

We consider the problem of learning a low-rank matrix, constrained to lie in a linear subspace, and introduce a novel factorization for modeling such matrices. A salient feature of the proposed factorization scheme is it decouples the low-rank and the structural constraints onto separate factors. We formulate the optimization problem on the Riemannian spectrahedron manifold, where the Riemannian framework allows to develop computationally efficient conjugate gradient and trust-region algorithms. Experiments on problems such as standard/robust/non-negative matrix completion, Hankel matrix learning and multi-task learning demonstrate the efficacy of our approach. A shorter version of this work has been published in ICML'18.


Tensor Completion Algorithms in Big Data Analytics

arXiv.org Machine Learning

Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in data mining, computer vision, signal processing, and neuroscience, etc. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. Towards a better comprehension and comparison of vast existing advances, we summarize and categorize them into four groups including general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume) and dynamic tensor completion algorithms (velocity). Besides, we introduce their applications on real-world data-driven problems and present an open-source package covering several widely used tensor decomposition and completion algorithms. Our goal is to summarize these popular methods and introduce them to researchers for promoting the research process in this field and give an available repository for practitioners. In the end, we also discuss some challenges and promising research directions in this community for future explorations.