Goto

Collaborating Authors

What makes some POMDP problems easy to approximate?

Neural Information Processing Systems

Point-based algorithms have been surprisingly successful in computing approximately optimalsolutions for partially observable Markov decision processes (POMDPs) in high dimensional belief spaces. In this work, we seek to understand the belief-space properties that allow some POMDP problems to be approximated efficiently and thus help to explain the point-based algorithms' success often observed inthe experiments. We show that an approximately optimal POMDP solution can be computed in time polynomial in the covering number of a reachable belief space, which is the subset of the belief space reachable from a given belief point. We also show that under the weaker condition of having a small covering number for an optimal reachable space, which is the subset of the belief space reachable under an optimal policy, computing an approximately optimal solution is NPhard. However, given a suitable set of points that "cover" an optimal reachable spacewell, an approximate solution can be computed in polynomial time. The covering number highlights several interesting properties that reduce the complexity ofPOMDP planning in practice, e.g., fully observed state variables, beliefs with sparse support, smooth beliefs, and circulant state-transition matrices.


Heuristic Search Value Iteration for POMDPs

arXiv.org Artificial Intelligence

We present a novel POMDP planning algorithm called heuristic search value iteration (HSVI).HSVI is an anytime algorithm that returns a policy and a provable bound on its regret with respect to the optimal policy. HSVI gets its power by combining two well-known techniques: attention-focusing search heuristics and piecewise linear convex representations of the value function. HSVI's soundness and convergence have been proven. On some benchmark problems from the literature, HSVI displays speedups of greater than 100 with respect to other state-of-the-art POMDP value iteration algorithms. We also apply HSVI to a new rover exploration problem 10 times larger than most POMDP problems in the literature.


Perseus: Randomized Point-based Value Iteration for POMDPs

arXiv.org Artificial Intelligence

Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems.


Perseus: Randomized Point-based Value Iteration for POMDPs

AAAI Conferences

Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent's belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems.


Perseus: Randomized Point-based Value Iteration for POMDPs

Journal of Artificial Intelligence Research

Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent's belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems.