Collaborating Authors


AAAI Conferences

The main task of part-of-speech (PoS) tagging is to assign the appropriate morphosyntactic category to each word in a sentence. A combination of different PoS taggers usually results in higher tagging accuracy than obtained by the use of only a single tagger. We present a new language and tagset independent system, CombiTagger, which combines automatically the output of several taggers. The system, which is open source, provides algorithms for simple and weighted voting, but it is extensible so that other combination algorithms can be added easily. We demonstrate the functionality of CombiTagger by using it to develop and evaluate combined taggers for Icelandic.

Weighted Electoral Control

Journal of Artificial Intelligence Research

Although manipulation and bribery have been extensively studied under weighted voting, there has been almost no work done on election control under weighted voting. This is unfortunate, since weighted voting appears in many important natural settings. In this paper, we study the complexity of controlling the outcome of weighted elections through adding and deleting voters. We obtain polynomial-time algorithms, NP-completeness results, and for many NP-complete cases, approximation algorithms. In particular, for scoring rules we completely characterize the complexity of weighted voter control. Our work shows that for quite a few important cases, either polynomial-time exact algorithms or polynomial-time approximation algorithms exist.

Optimizing Majority Voting Based Systems Under a Resource Constraint for Multiclass Problems Artificial Intelligence

Ensemble-based approaches are very effective in various fields in raising the accuracy of its individual members, when some voting rule is applied for aggregating the individual decisions. In this paper, we investigate how to find and characterize the ensembles having the highest accuracy if the total cost of the ensemble members is bounded. This question leads to Knapsack problem with non-linear and non-separable objective function in binary and multiclass classification if the majority voting is chosen for the aggregation. As the conventional solving methods cannot be applied for this task, a novel stochastic approach was introduced in the binary case where the energy function is discussed as the joint probability function of the member accuracy. We show some theoretical results with respect to the expected ensemble accuracy and its variance in the multiclass classification problem which can help us to solve the Knapsack problem.

Max-Margin Majority Voting for Learning from Crowds

Neural Information Processing Systems

Learning-from-crowds aims to design proper aggregation strategies to infer the unknown true labels from the noisy labels provided by ordinary web workers. This paper presents max-margin majority voting (M^3V) to improve the discriminative ability of majority voting and further presents a Bayesian generalization to incorporate the flexibility of generative methods on modeling noisy observations with worker confusion matrices. We formulate the joint learning as a regularized Bayesian inference problem, where the posterior regularization is derived by maximizing the margin between the aggregated score of a potential true label and that of any alternative label. Our Bayesian model naturally covers the Dawid-Skene estimator and M^3V. Empirical results demonstrate that our methods are competitive, often achieving better results than state-of-the-art estimators.

Improving Quality of Crowdsourced Labels via Probabilistic Matrix Factorization

AAAI Conferences

In crowdsourced relevance judging, each crowd workertypically judges only a small number of examples,yielding a sparse and imbalanced set of judgments inwhich relatively few workers influence output consensuslabels, particularly with simple consensus methodslike majority voting. We show how probabilistic matrixfactorization, a standard approach in collaborative filtering,can be used to infer missing worker judgments suchthat all workers influence output labels. Given completeworker judgments inferred by PMF, we evaluate impactin unsupervised and supervised scenarios. In thesupervised case, we consider both weighted voting andworker selection strategies based on worker accuracy.Experiments on a synthetic data set and a real turk dataset with crowd judgments from the 2010 TREC RelevanceFeedback Track show promise of the PMF approachmerits further investigation and analysis.