IBM Watson aligns with 16 health systems and imaging firms to apply cognitive computing to battle cancer, diabetes, heart disease

#artificialintelligence

IBM Watson Health has formed a medical imaging collaborative with more than 15 leading healthcare organizations. The goal: To take on some of the most deadly diseases. The collaborative, which includes health systems, academic medical centers, ambulatory radiology providers and imaging technology companies, aims to help doctors address breast, lung, and other cancers; diabetes; eye health; brain disease; and heart disease and related conditions, such as stroke. Watson will mine insights from what IBM calls previously invisible unstructured imaging data and combine it with a broad variety of data from other sources, such as data from electronic health records, radiology and pathology reports, lab results, doctors' progress notes, medical journals, clinical care guidelines and published outcomes studies. As the work of the collaborative evolves, Watson's rationale and insights will evolve, informed by the latest combined thinking of the participating organizations.


Deep Learning: Not Just for Silicon Valley · fast.ai

#artificialintelligence

Recent American news events range from horrifying to dystopian, but reading the applications of our fast.ai I was blown away by how many bright, creative, resourceful folks from all over the world are applying deep learning to tackle a variety of meaningful and interesting problems. Their passions range from ending illegal logging, diagnosing malaria in rural Uganda, translating Japanese manga, reducing farmer suicides in India via better loans, making Nigerian fashion recommendations, monitoring patients with Parkinson's disease, and more. Our mission at fast.ai is to make deep learning accessible to people from varied backgrounds outside of elite institutions, who are tackling problems in meaningful but low-resource areas, far from mainstream deep learning research. Our group of selected fellows for Deep Learning Part 2 includes people from Nigeria, Ivory Coast, South Africa, Pakistan, Bangladesh, India, Singapore, Israel, Canada, Spain, Germany, France, Poland, Russia, and Turkey.


How 3D Printing and IBM Watson Could Replace Doctors

#artificialintelligence

Health care executives from IBM Watson and Athenahealth athn debated that question onstage at Fortune's inaugural Brainstorm Health conference Tuesday. In addition to partnering with Celgene celg to better track negative drug side effects, IBM ibm is applying its cognitive computing AI technology to recommend cancer treatment in rural areas in the U.S., India, and China, where there is a dearth of oncologists, said Deborah DiSanzo, general manager for IBM Watson Health. For example, IBM Watson could read a patient's electronic medical record, analyze imagery of the cancer, and even look at gene sequencing of the tumor to figure out the optimal treatment plan for a particular person, she said. "That is the promise of AI--not that we are going to replace people, not that we're going to replace doctors, but that we really augment the intelligence and help," DiSanzo said. Athenahealth CEO Jonathan Bush, however, disagreed.


Solving the Empirical Bayes Normal Means Problem with Correlated Noise

arXiv.org Machine Learning

The Normal Means problem plays a fundamental role in many areas of modern high-dimensional statistics, both in theory and practice. And the Empirical Bayes (EB) approach to solving this problem has been shown to be highly effective, again both in theory and practice. However, almost all EB treatments of the Normal Means problem assume that the observations are independent. In practice correlations are ubiquitous in real-world applications, and these correlations can grossly distort EB estimates. Here, exploiting theory from Schwartzman (2010), we develop new EB methods for solving the Normal Means problem that take account of unknown correlations among observations. We provide practical software implementations of these methods, and illustrate them in the context of large-scale multiple testing problems and False Discovery Rate (FDR) control. In realistic numerical experiments our methods compare favorably with other commonly-used multiple testing methods.


Predicting Treatment Initiation from Clinical Time Series Data via Graph-Augmented Time-Sensitive Model

arXiv.org Machine Learning

Many computational models were proposed to extract temporal patterns from clinical time series for each patient and among patient group for predictive healthcare. However, the common relations among patients (e.g., share the same doctor) were rarely considered. In this paper, we represent patients and clinicians relations by bipartite graphs addressing for example from whom a patient get a diagnosis. We then solve for the top eigenvectors of the graph Laplacian, and include the eigenvectors as latent representations of the similarity between patient-clinician pairs into a time-sensitive prediction model. We conducted experiments using real-world data to predict the initiation of first-line treatment for Chronic Lymphocytic Leukemia (CLL) patients. Results show that relational similarity can improve prediction over multiple baselines, for example a 5% incremental over long-short term memory baseline in terms of area under precision-recall curve.