Eric B. Baum 1 NEC Research Institute, 4 Independence Way, Princeton NJ 08540 eric@research.NJ.NEC.COM Abstract The point of game tree search is to insulate oneself from errors in the evaluation function. The standard approach is to grow a full width tree as deep as time allows, and then value the tree as if the leaf evaluations were exact. This has been effective in many games because of the computational efficiency of the alpha-beta algorithm. A Bayesian would suggest instead to train a model of one's uncertainty. This model adds extra information in addition to the standard evaluation function. Within such a formal model, there is an optimal tree growth procedure and an optimal method of valueing the tree. We describe how to optimally value the tree, and how to approximate on line the optimal tree to search.

Peot, Mark Alan, Shachter, Ross D.

The process of diagnosis involves learning about the state of a system from various observations of symptoms or findings about the system. Sophisticated Bayesian (and other) algorithms have been developed to revise and maintain beliefs about the system as observations are made. Nonetheless, diagnostic models have tended to ignore some common sense reasoning exploited by human diagnosticians; In particular, one can learn from which observations have not been made, in the spirit of conversational implicature. There are two concepts that we describe to extract information from the observations not made. First, some symptoms, if present, are more likely to be reported before others. Second, most human diagnosticians and expert systems are economical in their data-gathering, searching first where they are more likely to find symptoms present. Thus, there is a desirable bias toward reporting symptoms that are present. We develop a simple model for these concepts that can significantly improve diagnostic inference.

We propose an abductive diagnosis theory that integrates probabilistic, causal and taxonomic knowledge. Probabilistic knowledge allows us to select the most likely explanation; causal knowledge allows us to make reasonable independence assumptions; taxonomic knowledge allows causation to be modeled at different levels of detail, and allows observations be described in different levels of precision. Unlike most other approaches where a causal explanation is a hypothesis that one or more causative events occurred, we define an explanation of a set of observations to be an occurrence of a chain of causation events. These causation events constitute a scenario where all the observations are true. We show that the probabilities of the scenarios can be computed from the conditional probabilities of the causation events. Abductive reasoning is inherently complex even if only modest expressive power is allowed. However, our abduction algorithm is exponential only in the number of observations to be explained, and is polynomial in the size of the knowledge base. This contrasts with many other abduction procedures that are exponential in the size of the knowledge base.

In an earlier paper, a new theory of measurefree "conditional" objects was presented. In this paper, emphasis is placed upon the motivation of the theory. The central part of this motivation is established through an example involving a knowledge-based system. In order to evaluate combination of evidence for this system, using observed data, auxiliary at tribute and diagnosis variables, and inference rules connecting them, one must first choose an appropriate algebraic logic description pair (ALDP): a formal language or syntax followed by a compatible logic or semantic evaluation (or model). Three common choices- for this highly non-unique choice - are briefly discussed, the logics being Classical Logic, Fuzzy Logic, and Probability Logic. In all three,the key operator representing implication for the inference rules is interpreted as the often-used disjunction of a negation (b => a) = (b'v a), for any events a,b. However, another reasonable interpretation of the implication operator is through the familiar form of probabilistic conditioning. But, it can be shown - quite surprisingly - that the ALDP corresponding to Probability Logic cannot be used as a rigorous basis for this interpretation! To fill this gap, a new ALDP is constructed consisting of "conditional objects", extending ordinary Probability Logic, and compatible with the desired conditional probability interpretation of inference rules. It is shown also that this choice of ALDP leads to feasible computations for the combination of evidence evaluation in the example. In addition, a number of basic properties of conditional objects and the resulting Conditional Probability Logic are given, including a characterization property and a developed calculus of relations.