Raghunathan, Aditi, Jain, Prateek, Krishnawamy, Ravishankar

In this paper, we study the problem of learning a mixture of Gaussians with streaming data: given a stream of $N$ points in $d$ dimensions generated by an unknown mixture of $k$ spherical Gaussians, the goal is to estimate the model parameters using a single pass over the data stream. We analyze a streaming version of the popular Lloyd's heuristic and show that the algorithm estimates all the unknown centers of the component Gaussians accurately if they are sufficiently separated. Assuming each pair of centers are $C\sigma$ distant with $C=\Omega((k\log k)^{1/4}\sigma)$ and where $\sigma^2$ is the maximum variance of any Gaussian component, we show that asymptotically the algorithm estimates the centers optimally (up to certain constants); our center separation requirement matches the best known result for spherical Gaussians \citep{vempalawang}. For finite samples, we show that a bias term based on the initial estimate decreases at $O(1/{\rm poly}(N))$ rate while variance decreases at nearly optimal rate of $\sigma^2 d/N$. Our analysis requires seeding the algorithm with a good initial estimate of the true cluster centers for which we provide an online PCA based clustering algorithm. Indeed, the asymptotic per-step time complexity of our algorithm is the optimal $d\cdot k$ while space complexity of our algorithm is $O(dk\log k)$. In addition to the bias and variance terms which tend to $0$, the hard-thresholding based updates of streaming Lloyd's algorithm is agnostic to the data distribution and hence incurs an \emph{approximation error} that cannot be avoided. However, by using a streaming version of the classical \emph{(soft-thresholding-based)} EM method that exploits the Gaussian distribution explicitly, we show that for a mixture of two Gaussians the true means can be estimated consistently, with estimation error decreasing at nearly optimal rate, and tending to $0$ for $N\rightarrow \infty$.

Raghunathan, Aditi, Krishnaswamy, Ravishankar, Jain, Prateek

In this paper, we study the problem of learning a mixture of Gaussians with streaming data: given a stream of $N$ points in $d$ dimensions generated by an unknown mixture of $k$ spherical Gaussians, the goal is to estimate the model parameters using a single pass over the data stream. We analyze a streaming version of the popular Lloyd's heuristic and show that the algorithm estimates all the unknown centers of the component Gaussians accurately if they are sufficiently separated. Assuming each pair of centers are $C\sigma$ distant with $C=\Omega((k\log k)^{1/4}\sigma)$ and where $\sigma^2$ is the maximum variance of any Gaussian component, we show that asymptotically the algorithm estimates the centers optimally (up to constants); our center separation requirement matches the best known result for spherical Gaussians \citep{vempalawang}. For finite samples, we show that a bias term based on the initial estimate decreases at $O(1/{\rm poly}(N))$ rate while variance decreases at nearly optimal rate of $\sigma^2 d/N$. Our analysis requires seeding the algorithm with a good initial estimate of the true cluster centers for which we provide an online PCA based clustering algorithm. Indeed, the asymptotic per-step time complexity of our algorithm is the optimal $d\cdot k$ while space complexity of our algorithm is $O(dk\log k)$. In addition to the bias and variance terms which tend to $0$, the hard-thresholding based updates of streaming Lloyd's algorithm is agnostic to the data distribution and hence incurs an approximation error that cannot be avoided. However, by using a streaming version of the classical (soft-thresholding-based) EM method that exploits the Gaussian distribution explicitly, we show that for a mixture of two Gaussians the true means can be estimated consistently, with estimation error decreasing at nearly optimal rate, and tending to $0$ for $N\rightarrow \infty$.

Jin, Chi, Zhang, Yuchen, Balakrishnan, Sivaraman, Wainwright, Martin J., Jordan, Michael I.

We provide two fundamental results on the population (infinite-sample) likelihood function of Gaussian mixture models with $M \geq 3$ components. Our first main result shows that the population likelihood function has bad local maxima even in the special case of equally-weighted mixtures of well-separated and spherical Gaussians. We prove that the log-likelihood value of these bad local maxima can be arbitrarily worse than that of any global optimum, thereby resolving an open question of Srebro (2007). Our second main result shows that the EM algorithm (or a first-order variant of it) with random initialization will converge to bad critical points with probability at least $1-e^{-\Omega(M)}$. We further establish that a first-order variant of EM will not converge to strict saddle points almost surely, indicating that the poor performance of the first-order method can be attributed to the existence of bad local maxima rather than bad saddle points. Overall, our results highlight the necessity of careful initialization when using the EM algorithm in practice, even when applied in highly favorable settings.

Feldman, Dan, Faulkner, Matthew, Krause, Andreas

How can we train a statistical mixture model on a massive data set? In this paper, we show how to construct coresets for mixtures of Gaussians and natural generalizations. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset will also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size independent of the size of the data set. More precisely, we prove that a weighted set of $O(dk^3/\eps^2)$ data points suffices for computing a $(1+\eps)$-approximation for the optimal model on the original $n$ data points. Moreover, such coresets can be efficiently constructed in a map-reduce style computation, as well as in a streaming setting. Our results rely on a novel reduction of statistical estimation to problems in computational geometry, as well as new complexity results about mixtures of Gaussians. We empirically evaluate our algorithms on several real data sets, including a density estimation problem in the context of earthquake detection using accelerometers in mobile phones.

Suresh, Ananda Theertha, Orlitsky, Alon, Acharya, Jayadev, Jafarpour, Ashkan

Many important distributions are high dimensional, and often they can be modeled as Gaussian mixtures. We derive the first sample-efficient polynomial-time estimator for high-dimensional spherical Gaussian mixtures. Based on intuitive spectral reasoning, it approximates mixtures of $k$ spherical Gaussians in $d$-dimensions to within$\ell_1$ distance $\epsilon$ using $\mathcal{O}({dk^9(\log^2 d)}/{\epsilon^4})$ samples and $\mathcal{O}_{k,\epsilon}(d^3\log^5 d)$ computation time. Conversely, we show that any estimator requires $\Omega\bigl({dk}/{\epsilon^2}\bigr)$ samples, hence the algorithm's sample complexity is nearly optimal in the dimension. The implied time-complexity factor \mathcal{O}_{k,\epsilon}$ is exponential in $k$, but much smaller than previously known. We also construct a simple estimator for one-dimensional Gaussian mixtures that uses $\tilde\mathcal{O}(k /\epsilon^2)$ samples and $\tilde\mathcal{O}((k/\epsilon)^{3k+1})$ computation time.