Maddox, Wesley J., Izmailov, Pavel, Garipov, Timur, Vetrov, Dmitry P., Wilson, Andrew Gordon

We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including variational inference, MC dropout, KFAC Laplace, and temperature scaling.

Wang, Nan, Melchior, Jan, Wiskott, Laurenz

We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We show that GRBMs are capable of learning meaningful features both in a two-dimensional blind source separation task and in modeling natural images. Further, we show that reported difficulties in training GRBMs are due to the failure of the training algorithm rather than the model itself. Based on our analysis we are able to propose several training recipes, which allowed successful and fast training in our experiments. Finally, we discuss the relationship of GRBMs to several modifications that have been proposed to improve the model.

Modern deep neural network models suffer from adversarial examples, i.e. confidently misclassified points in the input space. It has been shown that Bayesian neural networks are a promising approach for detecting adversarial points, but careful analysis is problematic due to the complexity of these models. Recently Gilmer et al. (2018) introduced adversarial spheres, a toy set-up that simplifies both practical and theoretical analysis of the problem. In this work, we use the adversarial sphere set-up to understand the properties of approximate Bayesian inference methods for a linear model in a noiseless setting. We compare predictions of Bayesian and non-Bayesian methods, showcasing the advantages of the former, although revealing open challenges for deep learning applications.

Zhao, Yang, Zhang, Jianyi, Chen, Changyou

Scalable Bayesian sampling is playing an important role in modern machine learning, especially in the fast-developed unsupervised-(deep)-learning models. While tremendous progresses have been achieved via scalable Bayesian sampling such as stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD), the generated samples are typically highly correlated. Moreover, their sample-generation processes are often criticized to be inefficient. In this paper, we propose a novel self-adversarial learning framework that automatically learns a conditional generator to mimic the behavior of a Markov kernel (transition kernel). High-quality samples can be efficiently generated by direct forward passes though a learned generator. Most importantly, the learning process adopts a self-learning paradigm, requiring no information on existing Markov kernels, e.g., knowledge of how to draw samples from them. Specifically, our framework learns to use current samples, either from the generator or pre-provided training data, to update the generator such that the generated samples progressively approach a target distribution, thus it is called self-learning. Experiments on both synthetic and real datasets verify advantages of our framework, outperforming related methods in terms of both sampling efficiency and sample quality.

Honkela, Antti, Valpola, Harri

In this paper we present a framework for using multi-layer perceptron (MLP)networks in nonlinear generative models trained by variational Bayesian learning. The nonlinearity is handled by linearizing it using a Gauss-Hermite quadrature at the hidden neurons. Thisyields an accurate approximation for cases of large posterior variance.The method can be used to derive nonlinear counterparts forlinear algorithms such as factor analysis, independent component/factor analysis and state-space models. This is demonstrated witha nonlinear factor analysis experiment in which even 20 sources can be estimated from a real world speech data set.