### Precision and Recall

Imagine a machine learning algorithm is tasked with identifying the number of bananas within a bowl of fruit. In total, the bowl contains 10 pieces of fruit, 4 of which are bananas, and 6 are apples. The algorithm determines that there are 5 bananas, and 5 apples. The number of bananas that were counted correctly are known as true positives, while the items that were identified incorrectly as bananas are called false positives. In this example, there are 4 true positives, and one false positive, making the algorithms precision 4/5, and its recall is 4/10.

### Avoiding False Positive in Multi-Instance Learning

In multi-instance learning, there are two kinds of prediction failure, i.e., false negative and false positive. Current research mainly focus on avoding the former. We attempt to utilize the geometric distribution of instances inside positive bags to avoid both the former and the latter. Based on kernel principal component analysis, we define a projection constraint for each positive bag to classify its constituent instances far away from the separating hyperplane while place positive instances and negative instances at opposite sides. We apply the Constrained Concave-Convex Procedure to solve the resulted problem.

### Positive Semidefinite Metric Learning with Boosting

The learning of appropriate distance metrics is a critical problem in classification. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices.

### Estimating the class prior and posterior from noisy positives and unlabeled data

We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data. In recent years, several algorithms have been proposed to learn from positive-unlabeled data; however, many of these contributions remain theoretical, performing poorly on real high-dimensional data that is typically contaminated with noise. We build on this previous work to develop two practical classification algorithms that explicitly model the noise in the positive labels and utilize univariate transforms built on discriminative classifiers. We prove that these univariate transforms preserve the class prior, enabling estimation in the univariate space and avoiding kernel density estimation for high-dimensional data. The theoretical development and parametric and nonparametric algorithms proposed here constitute an important step towards wide-spread use of robust classification algorithms for positive-unlabeled data.

### Open Category Detection with PAC Guarantees

Open category detection is the problem of detecting "alien" test instances that belong to categories or classes that were not present in the training data. In many applications, reliably detecting such aliens is central to ensuring the safety and accuracy of test set predictions. Unfortunately, there are no algorithms that provide theoretical guarantees on their ability to detect aliens under general assumptions. Further, while there are algorithms for open category detection, there are few empirical results that directly report alien detection rates. Thus, there are significant theoretical and empirical gaps in our understanding of open category detection. In this paper, we take a step toward addressing this gap by studying a simple, but practically-relevant variant of open category detection. In our setting, we are provided with a "clean" training set that contains only the target categories of interest and an unlabeled "contaminated" training set that contains a fraction $\alpha$ of alien examples. Under the assumption that we know an upper bound on $\alpha$, we develop an algorithm with PAC-style guarantees on the alien detection rate, while aiming to minimize false alarms. Empirical results on synthetic and standard benchmark datasets demonstrate the regimes in which the algorithm can be effective and provide a baseline for further advancements.