Goto

Collaborating Authors


A Survey of Available Corpora for Building Data-Driven Dialogue Systems

arXiv.org Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


A Technical Survey on Statistical Modelling and Design Methods for Crowdsourcing Quality Control

arXiv.org Machine Learning

Online crowdsourcing provides a scalable and inexpensive means to collect knowledge (e.g. labels) about various types of data items (e.g. text, audio, video). However, it is also known to result in large variance in the quality of recorded responses which often cannot be directly used for training machine learning systems. To resolve this issue, a lot of work has been conducted to control the response quality such that low-quality responses cannot adversely affect the performance of the machine learning systems. Such work is referred to as the quality control for crowdsourcing. Past quality control research can be divided into two major branches: quality control mechanism design and statistical models. The first branch focuses on designing measures, thresholds, interfaces and workflows for payment, gamification, question assignment and other mechanisms that influence workers' behaviour. The second branch focuses on developing statistical models to perform effective aggregation of responses to infer correct responses. The two branches are connected as statistical models (i) provide parameter estimates to support the measure and threshold calculation, and (ii) encode modelling assumptions used to derive (theoretical) performance guarantees for the mechanisms. There are surveys regarding each branch but they lack technical details about the other branch. Our survey is the first to bridge the two branches by providing technical details on how they work together under frameworks that systematically unify crowdsourcing aspects modelled by both of them to determine the response quality. We are also the first to provide taxonomies of quality control papers based on the proposed frameworks. Finally, we specify the current limitations and the corresponding future directions for the quality control research.


Effective Learning of Probabilistic Models for Clinical Predictions from Longitudinal Data

arXiv.org Machine Learning

Such information includes: the database in modern hospital systems, usually known as Electronic Health Records (EHR), which store the patients' diagnosis, medication, laboratory test results, medical image data, etc.; information on various health behaviors tracked and stored by wearable devices, ubiquitous sensors and mobile applications, such as the smoking status, alcoholism history, exercise level, sleeping conditions, etc.; information collected by census or various surveys regarding sociodemographic factors of the target cohort; and information on people's mental health inferred from their social media activities or social networks such as Twitter, Facebook, etc. These health-related data come from heterogeneous sources, describe assorted aspects of the individual's health conditions. Such data is rich in structure and information which has great research potentials for revealing unknown medical knowledge about genomic epidemiology, disease developments and correlations, drug discoveries, medical diagnosis, mental illness prevention, health behavior adaption, etc. In real-world problems, the number of features relating to a certain health condition could grow exponentially with the development of new information techniques for collecting and measuring data. To reveal the causal influence between various factors and a certain disease or to discover the correlations among diseases from data at such a tremendous scale, requires the assistance of advanced information technology such as data mining, machine learning, text mining, etc. Machine learning technology not only provides a way for learning qualitative relationships among features and patients, but also the quantitative parameters regarding the strength of such correlations.