Collaborating Authors

DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification Artificial Intelligence

Data processing and analysis pipelines in cosmological survey experiments introduce data perturbations that can significantly degrade the performance of deep learning-based models. Given the increased adoption of supervised deep learning methods for processing and analysis of cosmological survey data, the assessment of data perturbation effects and the development of methods that increase model robustness are increasingly important. In the context of morphological classification of galaxies, we study the effects of perturbations in imaging data. In particular, we examine the consequences of using neural networks when training on baseline data and testing on perturbed data. We consider perturbations associated with two primary sources: 1) increased observational noise as represented by higher levels of Poisson noise and 2) data processing noise incurred by steps such as image compression or telescope errors as represented by one-pixel adversarial attacks. We also test the efficacy of domain adaptation techniques in mitigating the perturbation-driven errors. We use classification accuracy, latent space visualizations, and latent space distance to assess model robustness. Without domain adaptation, we find that processing pixel-level errors easily flip the classification into an incorrect class and that higher observational noise makes the model trained on low-noise data unable to classify galaxy morphologies. On the other hand, we show that training with domain adaptation improves model robustness and mitigates the effects of these perturbations, improving the classification accuracy by 23% on data with higher observational noise. Domain adaptation also increases by a factor of ~2.3 the latent space distance between the baseline and the incorrectly classified one-pixel perturbed image, making the model more robust to inadvertent perturbations.

Detection of extragalactic Ultra-Compact Dwarfs and Globular Clusters using Explainable AI techniques Artificial Intelligence

Compact stellar systems such as Ultra-compact dwarfs (UCDs) and Globular Clusters (GCs) around galaxies are known to be the tracers of the merger events that have been forming these galaxies. Therefore, identifying such systems allows to study galaxies mass assembly, formation and evolution. However, in the lack of spectroscopic information detecting UCDs/GCs using imaging data is very uncertain. Here, we aim to train a machine learning model to separate these objects from the foreground stars and background galaxies using the multi-wavelength imaging data of the Fornax galaxy cluster in 6 filters, namely u, g, r, i, J and Ks. The classes of objects are highly imbalanced which is problematic for many automatic classification techniques. Hence, we employ Synthetic Minority Over-sampling to handle the imbalance of the training data. Then, we compare two classifiers, namely Localized Generalized Matrix Learning Vector Quantization (LGMLVQ) and Random Forest (RF). Both methods are able to identify UCDs/GCs with a precision and a recall of >93 percent and provide relevances that reflect the importance of each feature dimension %(colors and angular sizes) for the classification. Both methods detect angular sizes as important markers for this classification problem. While it is astronomical expectation that color indices of u-i and i-Ks are the most important colors, our analysis shows that colors such as g-r are more informative, potentially because of higher signal-to-noise ratio. Besides the excellent performance the LGMLVQ method allows further interpretability by providing the feature importance for each individual class, class-wise representative samples and the possibility for non-linear visualization of the data as demonstrated in this contribution. We conclude that employing machine learning techniques to identify UCDs/GCs can lead to promising results.

Clustering with phylogenetic tools in astrophysics Machine Learning

Phylogenetic approaches are finding more and more applications outside the field of biology. Astrophysics is no exception since an overwhelming amount of multivariate data has appeared in the last twenty years or so. In particular, the diversification of galaxies throughout the evolution of the Universe quite naturally invokes phylogenetic approaches. We have demonstrated that Maximum Parsimony brings useful astrophysical results, and we now proceed toward the analyses of large datasets for galaxies. In this talk I present how we solve the major difficulties for this goal: the choice of the parameters, their discretization, and the analysis of a high number of objects with an unsupervised NP-hard classification technique like cladistics. 1. Introduction How do the galaxy form, and when? How did the galaxy evolve and transform themselves to create the diversity we observe? What are the progenitors to present-day galaxies? To answer these big questions, observations throughout the Universe and the physical modelisation are obvious tools. But between these, there is a key process, without which it would be impossible to extract some digestible information from the complexity of these systems. This is classification. One century ago, galaxies were discovered by Hubble. From images obtained in the visible range of wavelengths, he synthetised his observations through the usual process: classification. With only one parameter (the shape) that is qualitative and determined with the eye, he found four categories: ellipticals, spirals, barred spirals and irregulars. This is the famous Hubble classification. He later hypothetized relationships between these classes, building the Hubble Tuning Fork. The Hubble classification has been refined, notably by de Vaucouleurs, and is still used as the only global classification of galaxies. Even though the physical relationships proposed by Hubble are not retained any more, the Hubble Tuning Fork is nearly always used to represent the classification of the galaxy diversity under its new name the Hubble sequence (e.g. Delgado-Serrano, 2012). Its success is impressive and can be understood by its simplicity, even its beauty, and by the many correlations found between the morphology of galaxies and their other properties. And one must admit that there is no alternative up to now, even though both the Hubble classification and diagram have been recognised to be unsatisfactory. Among the most obvious flaws of this classification, one must mention its monovariate, qualitative, subjective and old-fashioned nature, as well as the difficulty to characterise the morphology of distant galaxies. The first two most significant multivariate studies were by Watanabe et al. (1985) and Whitmore (1984). Since the year 2005, the number of studies attempting to go beyond the Hubble classification has increased largely. Why, despite of this, the Hubble classification and its sequence are still alive and no alternative have yet emerged (Sandage, 2005)? My feeling is that the results of the multivariate analyses are not easily integrated into a one-century old practice of modeling the observations. In addition, extragalactic objects like galaxies, stellar clusters or stars do evolve. Astronomy now provides data on very distant objects, raising the question of the relationships between those and our present day nearby galaxies. Clearly, this is a phylogenetic problem. Astrocladistics 1 aims at exploring the use of phylogenetic tools in astrophysics (Fraix-Burnet et al., 2006a,b). We have proved that Maximum Parsimony (or cladistics) can be applied in astrophysics and provides a new exploration tool of the data (Fraix-Burnet et al., 2009, 2012, Cardone \& Fraix-Burnet, 2013). As far as the classification of galaxies is concerned, a larger number of objects must now be analysed. In this paper, I

Galaxy classification: A machine learning analysis of GAMA catalogue data Machine Learning

We present a machine learning analysis of five labelled galaxy catalogues from the Galaxy And Mass Assembly (GAMA): The SersicCatVIKING and SersicCatUKIDSS catalogues containing morphological features, the GaussFitSimple catalogue containing spectroscopic features, the MagPhys catalogue including physical parameters for galaxies, and the Lambdar catalogue, which contains photometric measurements. Extending work previously presented at the ESANN 2018 conference - in an analysis based on Generalized Relevance Matrix Learning Vector Quantization and Random Forests - we find that neither the data from the individual catalogues nor a combined dataset based on all 5 catalogues fully supports the visual-inspection-based galaxy classification scheme employed to categorise the galaxies. In particular, only one class, the Little Blue Spheroids, is consistently separable from the other classes. To aid further insight into the nature of the employed visual-based classification scheme with respect to physical and morphological features, we present the galaxy parameters that are discriminative for the achieved class distinctions.

Self-Supervised Representation Learning for Astronomical Images Artificial Intelligence

Submitted to The Astrophysical Journal Letters ABSTRACT Sky surveys are the largest data generators in astronomy, making automated tools for extracting meaningful scientific information an absolute necessity. We show that, without the need for labels, self-supervised learning recovers representations of sky survey images that are semantically useful for a variety of scientific tasks. These representations can be directly used as features, or fine-tuned, to outperform supervised methods trained only on labeled data. We apply a contrastive learning framework on multi-band galaxy photometry from the Sloan Digital Sky Survey (SDSS), to learn image representations. We then use them for galaxy morphology classification, and fine-tune them for photometric redshift estimation, using labels from the Galaxy Zoo 2 dataset and SDSS spectroscopy. In both downstream tasks, using the same learned representations, we outperform the supervised stateof-the-art results, and we show that our approach can achieve the accuracy of supervised models while using 2-4 times fewer labels for training. INTRODUCTION the quantity and quality of (manually assigned) image labels. Observing and imaging objects in the sky has been Serendipitous discovery of an ionization echo from a the main driver of the scientific discovery process in astronomy, recently faded quasar (Lintott et al. 2009), and the cumbersome because doing controlled experiments is not a search for similar systems that followed (Keel viable option. It in the 1990s, spearheaded by SDSS (Gunn et al. 1998, demonstrates the need for methods which allow for the 2006), has rendered obsolete the approach of manual discovery of truly unusual and previously unseen objects, inspection of images by an expert.