Collaborating Authors

Develop an Intuition for Severely Skewed Class Distributions


An imbalanced classification problem is a problem that involves predicting a class label where the distribution of class labels in the training dataset is not equal. A challenge for beginners working with imbalanced classification problems is what a specific skewed class distribution means. For example, what is the difference and implication for a 1:10 vs. a 1:100 class ratio? Differences in the class distribution for an imbalanced classification problem will influence the choice of data preparation and modeling algorithms. Therefore it is critical that practitioners develop an intuition for the implications for different class distributions.

Incremental Learning for Metric-Based Meta-Learners Machine Learning

Majority of the modern meta-learning methods for few-shot classification tasks operate in two phases: a meta-training phase where the meta-learner learns a generic representation by solving multiple few-shot tasks sampled from a large dataset and a testing phase, where the meta-learner leverages its learnt internal representation for a specific few-shot task involving classes which were not seen during the meta-training phase. To the best of our knowledge, all such meta-learning methods use a single base dataset for meta-training to sample tasks from and do not adapt the algorithm after meta-training. This strategy may not scale to real-world use-cases where the meta-learner does not potentially have access to the full meta-training dataset from the very beginning and we need to update the meta-learner in an incremental fashion when additional training data becomes available. Through our experimental setup, we develop a notion of incremental learning during the meta-training phase of meta-learning and propose a method which can be used with multiple existing metric-based meta-learning algorithms. Experimental results on benchmark dataset show that our approach performs favorably at test time as compared to training a model with the full meta-training set and incurs negligible amount of catastrophic forgetting

Undersampling Algorithms for Imbalanced Classification


Taken from Improving Identification of Difficult Small Classes by Balancing Class Distribution. This technique can be implemented using the NeighbourhoodCleaningRule imbalanced-learn class.

Start coding with this comprehensive master class


TL;DR: The Complete C# Master Class Course is on sale for £10.55 as of June 30, saving you 93% on list price. Remember back in the day when you had to spend years in school and/or your life savings to learn to code? Those days are long gone. Getting into coding is easier -- and more affordable -- than ever before. Since there are approximately a billion coding languages out there, choosing one to start with is no easy feat.

Cross Attention Network for Few-shot Classification

Neural Information Processing Systems

Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative.