Goto

Collaborating Authors

Inferring Concept Prerequisite Relations from Online Educational Resources

arXiv.org Artificial Intelligence

The Internet has rich and rapidly increasing sources of high quality educational content. Inferring prerequisite relations between educational concepts is required for modern large-scale online educational technology applications such as personalized recommendations and automatic curriculum creation. We present PREREQ, a new supervised learning method for inferring concept prerequisite relations. PREREQ is designed using latent representations of concepts obtained from the Pairwise Latent Dirichlet Allocation model, and a neural network based on the Siamese network architecture. PREREQ can learn unknown concept prerequisites from course prerequisites and labeled concept prerequisite data. It outperforms state-of-the-art approaches on benchmark datasets and can effectively learn from very less training data. PREREQ can also use unlabeled video playlists, a steadily growing source of training data, to learn concept prerequisites, thus obviating the need for manual annotation of course prerequisites.


Recovering Concept Prerequisite Relations from University Course Dependencies

AAAI Conferences

Prerequisite relations among concepts play an important role in many educational applications such as intelligent tutoring system and curriculum planning. With the increasing amount of educational data available, automatic discovery of concept prerequisite relations has become both an emerging research opportunity and an open challenge. Here, we investigate how to recover concept prerequisite relations from course dependencies and propose an optimization based framework to address the problem. We create the first real dataset for empirically studying this problem, which consists of the listings of computer science courses from 11 U.S. universities and their concept pairs with prerequisite labels. Experiment results on a synthetic dataset and the real course dataset both show that our method outperforms existing baselines.


Deep Learning Prerequisites: The Numpy Stack in Python V2

#artificialintelligence

This is Deep Learning, Machine Learning, and Data Science Prerequisites: The Numpy Stack in Python (V2). The reason I made this course is because there is a huge gap for many students between machine learning "theory" and writing actual code. As I've always said: "If you can't implement it, then you don't understand it". Without basic knowledge of data manipulation, vectors, and matrices, students are not able to put their great ideas into working form, on a computer. This course closes that gap by teaching you all the basic operations you need for implementing machine learning and deep learning algorithms.


PyTorch Prerequisites - Syllabus for Neural Network Programming Series

#artificialintelligence

Welcome to this series on neural network programming with PyTorch. In this post, we will look at the prerequisites needed to be best prepared. We'll get an overview of the series and a sneak peek at a project we'll be working on. This will give us a good idea about what we'll be learning, and what skills we'll have by the end of the series. Without further ado, let's jump right in with the details.


What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

arXiv.org Machine Learning

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of "what should one learn first," we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.