Moral Decision-Making by Analogy: Generalizations versus Exemplars

AAAI Conferences

Moral reasoning is important to accurately model as AI systems become ever more integrated into our lives. Moral reasoning is rapid and unconscious; analogical reasoning, which can be unconscious, is a promising approach to model moral reasoning. This paper explores the use of analogical generalizations to improve moral reasoning. Analogical reasoning has already been used to successfully model moral reasoning in the MoralDM model, but it exhaustively matches across all known cases, which is computationally intractable and cognitively implausible for human-scale knowledge bases. We investigate the performance of an extension of MoralDM to use the MAC/FAC model of analogical retrieval over three conditions, across a set of highly confusable moral scenarios.


An Integrated Reasoning Approach to Moral Decision-Making

AAAI Conferences

We present a computational model, MoralDM, which integrates several AI techniques in order to model recent psychological findings on moral decision-making. Current theories of moral decision-making extend beyond pure utilitarian models by relying on contextual factors that vary with culture. MoralDM uses a natural language system to produce formal representations from psychological stimuli, to reduce tailorability. The impacts of secular versus sacred values are modeled via qualitative reasoning, using an order of magnitude representation. MoralDM uses a combination of first-principles reasoning and analogical reasoning to determine consequences and utilities when making moral judgments. We describe how MoralDM works and show that it can model psychological results and improve its performance via accumulating examples.


Analogical Chaining with Natural Language Instruction for Commonsense Reasoning

AAAI Conferences

Understanding commonsense reasoning is one of the core challenges of AI. We are exploring an approach inspired by cognitive science, called analogical chaining, to create cognitive systems that can perform commonsense reasoning. Just as rules are chained in deductive systems, multiple analogies build upon each other’s inferences in analogical chaining. The cases used in analogical chaining – called common sense units – are small, to provide inferential focus and broader transfer. Importantly, such common sense units can be learned via natural language instruction, thereby increasing the ease of extending such systems. This paper describes analogical chaining, natural language instruction via microstories, and some subtleties that arise in controlling reasoning. The utility of this technique is demonstrated by performance of an implemented system on problems from the Choice of Plausible Alternatives test of commonsense causal reasoning.



EA NLU: Practical Language Understanding for Cognitive Modeling

AAAI Conferences

This paper presents an approach to creating flexible general-logic representations from language for use in high-level reasoning tasks in cognitive modeling.  These representations are grounded in a large-scale ontology and emphasize the need for semantic breadth at the cost of syntactic breadth.  The task-independent interpretation process allows task-specific pragmatics to guide the interpretation process. In the context of a particular cognitive model, we discuss our use of limited abduction for interpretation and show results of its performance.