Distributional Correspondence Indexing for Cross-Lingual and Cross-Domain Sentiment Classification.

Journal of Artificial Intelligence Research

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a "target'' domain when the only available training data belongs to a different "source'' domain. In this paper we present the Distributional Correspondence Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. Term correspondence is quantified by means of a distributional correspondence function (DCF). We propose a number of efficient DCFs that are motivated by the distributional hypothesis, i.e., the hypothesis according to which terms with similar meaning tend to have similar distributions in text. Experiments show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification. DCI also brings about a significantly reduced computational cost, and requires a smaller amount of human intervention. As a final contribution, we discuss a more challenging formulation of the domain adaptation problem, in which both the cross-domain and cross-lingual dimensions are tackled simultaneously.


Distributional Correspondence Indexing for Cross-Lingual and Cross-Domain Sentiment Classification.

Journal of Artificial Intelligence Research

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a "target'' domain when the only available training data belongs to a different "source'' domain. In this paper we present the Distributional Correspondence Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. Term correspondence is quantified by means of a distributional correspondence function (DCF). We propose a number of efficient DCFs that are motivated by the distributional hypothesis, i.e., the hypothesis according to which terms with similar meaning tend to have similar distributions in text. Experiments show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification. DCI also brings about a significantly reduced computational cost, and requires a smaller amount of human intervention. As a final contribution, we discuss a more challenging formulation of the domain adaptation problem, in which both the cross-domain and cross-lingual dimensions are tackled simultaneously.


Domain Adaptation with Topical Correspondence Learning

AAAI Conferences

A serious and ubiquitous issue in machine learning is the lack ofsufficient training data in a domain of interest. Domain adaptation isan effective approach to dealing with this problem by transferringinformation or models learned from related, albeit distinct, domains tothe target domain. We develop a novel domain adaptation method fortext document classification under the framework of Non-negativeMatrix Factorization. Two key ideas of our method are to construct alatent topic space where a topic is decomposed into common wordsshared by all domains and words specific to individual domains, andthen to establish associations between words in different domainsthrough the common words as a bridge for knowledge transfer. Thecorrespondence between cross-domain topics leads to more coherentdistributions of source and target domains in the new representationwhile preserving the predictive power. Our new method outperformedseveral state-of-the-art domain adaptation methods on severalbenchmark datasets.


Active Transfer Learning for Cross-System Recommendation

AAAI Conferences

Recommender systems, especially the newly launched ones, have to deal with the data-sparsity issue, where little existing rating information is available. Recently, transfer learning has been proposed to address this problem by leveraging the knowledge from related recommender systems where rich collaborative data are available. However, most previous transfer learning models assume that entity-correspondences across different systems are given as input, which means that for any entity (e.g., a user or an item) in a target system, its corresponding entity in a source system is known. This assumption can hardly be satisfied in real-world scenarios where entity-correspondences across systems are usually unknown, and the cost of identifying them can be expensive. For example, it is extremely difficult to identify whether a user A from Facebook and a user B from Twitter are the same person. In this paper, we propose a framework to construct entity correspondence with limited budget by using active learning to facilitate knowledge transfer across recommender systems. Specifically, for the purpose of maximizing knowledge transfer, we first iteratively select entities in the target system based on our proposed criterion to query their correspondences in the source system. We then plug the actively constructed entity-correspondence mapping into a general transferred collaborative-filtering model to improve recommendation quality. We perform extensive experiments on real world datasets to verify the effectiveness of our proposed framework for this cross-system recommendation problem.


Do Convnets Learn Correspondence?

Neural Information Processing Systems

Convolutional neural nets (convnets) trained from massive labeled datasets have substantially improved the state-of-the-art in image classification and object detection. However, visual understanding requires establishing correspondence on a finer level than object category. Given their large pooling regions and training from whole-image labels, it is not clear that convnets derive their success from an accurate correspondence model which could be used for precise localization. In this paper, we study the effectiveness of convnet activation features for tasks requiring correspondence. We present evidence that convnet features localize at a much finer scale than their receptive field sizes, that they can be used to perform intraclass aligment as well as conventional hand-engineered features, and that they outperform conventional features in keypoint prediction on objects from PASCAL VOC 2011.