Watson Will Soon Be a Bus Driver In Washington D.C.


IBM has teamed up with Local Motors, a Phoenix-based automotive manufacturer that made the first 3D-printed car, to create a self-driving electric bus. Named "Olli," the bus has room for 12 people and uses IBM Watson's cloud-based cognitive computing system to provide information to passengers. In addition to automatically driving you where you want to go using Phoenix Wings autonomous driving technology, Olli can respond to questions and provide information, similar to Amazon's Echo home assistant. The bus debuts today in the Washington D.C. area for the public to use during select times over the next several months, and the IBM-Local Motors team hopes to introduce Olli to the Miami and Las Vegas areas by the end of the year. By using Watson's speech to text, natural language classifier, entity extraction, and text to speech APIs, the bus can provide several services beyond taking you to your destination.

Mixture Model Averaging for Clustering

arXiv.org Machine Learning

In mixture model-based clustering applications, it is common to fit several models from a family and report clustering results from only the `best' one. In such circumstances, selection of this best model is achieved using a model selection criterion, most often the Bayesian information criterion. Rather than throw away all but the best model, we average multiple models that are in some sense close to the best one, thereby producing a weighted average of clustering results. Two (weighted) averaging approaches are considered: averaging the component membership probabilities and averaging models. In both cases, Occam's window is used to determine closeness to the best model and weights are computed within a Bayesian model averaging paradigm. In some cases, we need to merge components before averaging; we introduce a method for merging mixture components based on the adjusted Rand index. The effectiveness of our model-based clustering averaging approaches is illustrated using a family of Gaussian mixture models on real and simulated data.

Parsimonious Shifted Asymmetric Laplace Mixtures

arXiv.org Machine Learning

A family of parsimonious shifted asymmetric Laplace mixture models is introduced. We extend the mixture of factor analyzers model to the shifted asymmetric Laplace distribution. Imposing constraints on the constitute parts of the resulting decomposed component scale matrices leads to a family of parsimonious models. An explicit two-stage parameter estimation procedure is described, and the Bayesian information criterion and the integrated completed likelihood are compared for model selection. This novel family of models is applied to real data, where it is compared to its Gaussian analogue within clustering and classification paradigms.

Variational Bayes Approximations for Clustering via Mixtures of Normal Inverse Gaussian Distributions

arXiv.org Machine Learning

Parameter estimation for model-based clustering using a finite mixture of normal inverse Gaussian (NIG) distributions is achieved through variational Bayes approximations. Univariate NIG mixtures and multivariate NIG mixtures are considered. The use of variational Bayes approximations here is a substantial departure from the traditional EM approach and alleviates some of the associated computational complexities and uncertainties. Our variational algorithm is applied to simulated and real data. The paper concludes with discussion and suggestions for future work.

RNA Modeling Using Gibbs Sampling and Stochastic Context Free Grammars

AAAI Conferences

Leslie Grate and Mark Herbster and Richard Hughey and David Haussler Baskin (;enter for Computer Engineering and Computer and Information Sciences University of California Santa Cruz, CA 95064 Keywords: RNA secondary structure, Gibbs sampler, Expectation Maximization, stochastic contextfree grammars, hidden Markov models, tP NA, snRNA, 16S rRNA, linguistic methods Abstract A new method of discovering the common secondary structure of a family of homologous RNA sequences using Gibbs sampling and stochastic context-free grammars is proposed. These parameters describe a statistical model of the family. After the Gibbs sampling has produced a crude statistical model for the family, this model is translated into a stochastic context-free grammar, which is then refined by an Expectation Maximization (EM) procedure produce a more complete model. A prototype implementation of the method is tested on tRNA, pieces of 16S rRNA and on U5 snRNA with good results. I. Saira Mian and Harry Noller Sinsheimer Laboratories University of California Santa Cruz, CA 95064 Introduction Tools for analyzing RNA are becoming increasingly important as in vitro evolution and selection techniques produce greater numbers of synthesized RNA families to supplement those related by phylogeny. Two principal methods have been established for predicting RNA secondary structure base pairings. The second technique employs thermodynamics to compare the free energy changes predicted for formation of possible s,'covdary structure and relies on finding the structure with the lowest free energy (Tinoco Jr., Uhlenbeck, & Levine 1971: Turner, Sugimoto, & Freier 1988; *This work was supported in part by NSF grants C,I)A-9115268 and IR1-9123692, and NIIt gratnt (.;M17129. When several related sequences are available that all share a common secondary structure, combinations of different approaches have been used to obtain improved results (Waterman 1989; Le & Zuker 1991; Han& Kim 1993; Chiu & Kolodziejczak 1991; Sankoff 1985; Winker et al. 1990; Lapedes 1992; Klinger & Brutlag 1993; Gutell et aL 1992). Recent efforts have applied Stochastic Context-Free Grammars (SCFGs) to the problems of statistical modeling, multiple alignment, discrimination and prediction of the secondary structure of RNA families (Sakakibara el al. 1994; 1993; Eddy & Durbin 1994; Searls 1993).