Collaborating Authors

Notes on a New Philosophy of Empirical Science Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.

The Future of Chess-Playing Technologies and the Significance Kasparov Versus Deep Blue of

AAAI Conferences

We will also briefly summarize some of the latest developments on computer chess research and highlight how our own work on a program called Chester tries to build on those developments to provide such justifications. Introduction Since "falling from grace" (DSg0) by the late 1980's, computer chess has recently received considerable attention in the popular media due to the 1996 match between IBM's Deep Blue chess machine and Garry Kasparov, the reigning World Champion. Furthermore, researchers of artificial intelligence seem to be increasingly willing to cite Deep Blue as an example of success (e.g.

A Review of Real-Time Strategy Game AI

AI Magazine

This literature review covers AI techniques used for real-time strategy video games, focusing specifically on StarCraft. It finds that the main areas of current academic research are in tactical and strategic decision-making, plan recognition, and learning, and it outlines the research contributions in each of these areas. The paper then contrasts the use of game AI in academia and industry, finding the academic research heavily focused on creating game-winning agents, while the indus- try aims to maximise player enjoyment. It finds the industry adoption of academic research is low because it is either in- applicable or too time-consuming and risky to implement in a new game, which highlights an area for potential investi- gation: bridging the gap between academia and industry. Fi- nally, the areas of spatial reasoning, multi-scale AI, and co- operation are found to require future work, and standardised evaluation methods are proposed to produce comparable re- sults between studies.

A Survey of Available Corpora for Building Data-Driven Dialogue Systems Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.