Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization Machine Learning

We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users' feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the underlying submodular function is unknown, users' feedback can provide noisy evaluations of the function that we seek to maximize. We provide a generic algorithm -- \submM{} -- for maximizing an unknown submodular function under cardinality constraints. This algorithm makes use of a novel exploration module -- \blbox{} -- that proposes good elements based on adaptively sampling noisy function evaluations. \blbox{} is able to accommodate different kinds of observation models such as value queries and pairwise comparisons. We provide PAC-style guarantees on the quality and sampling cost of the solution obtained by \submM{}. We demonstrate the effectiveness of our approach in an interactive, crowdsourced image collection summarization application.

Selecting Sequences of Items via Submodular Maximization

AAAI Conferences

Motivated by many real world applications such as recommendations in online shopping or entertainment, we consider the problem of selecting sequences of items. In this paper we introduce a novel class of utility functions over sequences of items, strictly generalizing the commonly used class of submodular set functions. We encode the sequential dependencies between items by a directed graph underlying the utility function. Classical algorithms fail to achieve any constant factor approximation guarantees on the problem of selecting sequences of bounded length with maximum utility. We propose an efficient algorithm for this problem that comes with strong theoretical guarantees characterized by the structural properties of the underlying graph. We demonstrate the effectiveness of our algorithm in synthetic and real world experiments on a movie recommendation dataset.

Stochastic Submodular Maximization: The Case of Coverage Functions

Neural Information Processing Systems

Stochastic optimization of continuous objectives is at the heart of modern machine learning. However, many important problems are of discrete nature and often involve submodular objectives. We seek to unleash the power of stochastic continuous optimization, namely stochastic gradient descent and its variants, to such discrete problems. We first introduce the problem of stochastic submodular optimization, where one needs to optimize a submodular objective which is given as an expectation. Our model captures situations where the discrete objective arises as an empirical risk (e.g., in the case of exemplar-based clustering), or is given as an explicit stochastic model (e.g., in the case of influence maximization in social networks). By exploiting that common extensions act linearly on the class of submodular functions, we employ projected stochastic gradient ascent and its variants in the continuous domain, and perform rounding to obtain discrete solutions. We focus on the rich and widely used family of weighted coverage functions. We show that our approach yields solutions that are guaranteed to match the optimal approximation guarantees, while reducing the computational cost by several orders of magnitude, as we demonstrate empirically.

Lazier Than Lazy Greedy

AAAI Conferences

Is it possible to maximize a monotone submodular function faster than the widely used lazy greedy algorithm (also known as accelerated greedy), both in theory and practice? In this paper, we develop the first linear-time algorithm for maximizing a general monotone submodular function subject to a cardinality constraint. We show that our randomized algorithm, STOCHASTIC-GREEDY, can achieve a (1 − 1/e − ε) approximation guarantee, in expectation, to the optimum solution in time linear in the size of the data and independent of the cardinality constraint. We empirically demonstrate the effectiveness of our algorithm on submodular functions arising in data summarization, including training large-scale kernel methods, exemplar-based clustering, and sensor placement. We observe that STOCHASTIC-GREEDY practically achieves the same utility value as lazy greedy but runs much faster. More surprisingly, we observe that in many practical scenarios STOCHASTIC-GREEDY does not evaluate the whole fraction of data points even once and still achieves indistinguishable results compared to lazy greedy.

Non-Monotone Adaptive Submodular Maximization

AAAI Conferences

A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies for this general class of adaptive optimization problems can be extremely hard. However, when the objective function is adaptive monotone and adaptive submodular, a simple greedy policy attains a 1-1/e approximation ratio in terms of expected utility. Unfortunately, many practical objective functions are naturally non-monotone; to our knowledge, no existing policy has provable performance guarantees when the assumption of adaptive monotonicity is lifted. We propose the adaptive random greedy policy for maximizing adaptive submodular functions, and prove that it retains the aforementioned 1-1/e approximation ratio for functions that are also adaptive monotone, while it additionally provides a 1/e approximation ratio for non-monotone adaptive submodular functions. We showcase the benefits of adaptivity on three real-world network data sets using two non-monotone functions, representative of two classes of commonly encountered non-monotone objectives.