Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation

Neural Information Processing Systems

Neural Machine Translation (NMT) has achieved remarkable progress with the quick evolvement of model structures. In this paper, we propose the concept of layer-wise coordination for NMT, which explicitly coordinates the learning of hidden representations of the encoder and decoder together layer by layer, gradually from low level to high level. Specifically, we design a layer-wise attention and mixed attention mechanism, and further share the parameters of each layer between the encoder and decoder to regularize and coordinate the learning. Experiments show that combined with the state-of-the-art Transformer model, layer-wise coordination achieves improvements on three IWSLT and two WMT translation tasks. More specifically, our method achieves 34.43 and 29.01 BLEU score on WMT16 English-Romanian and WMT14 English-German tasks, outperforming the Transformer baseline.


Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation

Neural Information Processing Systems

Neural Machine Translation (NMT) has achieved remarkable progress with the quick evolvement of model structures. In this paper, we propose the concept of layer-wise coordination for NMT, which explicitly coordinates the learning of hidden representations of the encoder and decoder together layer by layer, gradually fromlow level to high level. Specifically, we design a layer-wise attention and mixed attention mechanism, and further share the parameters of each layer between the encoder and decoder to regularize and coordinate the learning. Experiments showthat combined with the state-of-the-art Transformer model, layer-wise coordination achieves improvements on three IWSLT and two WMT translation tasks. More specifically, our method achieves 34.43 and 29.01 BLEU score on WMT16 English-Romanian and WMT14 English-German tasks, outperforming the Transformer baseline.


Modeling Recurrence for Transformer

arXiv.org Artificial Intelligence

Recently, the Transformer model that is based solely on attention mechanisms, has advanced the state-of-the-art on various machine translation tasks. However, recent studies reveal that the lack of recurrence hinders its further improvement of translation capacity. In response to this problem, we propose to directly model recurrence for Transformer with an additional recurrence encoder. In addition to the standard recurrent neural network, we introduce a novel attentive recurrent network to leverage the strengths of both attention and recurrent networks. Experimental results on the widely-used WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate the effectiveness of the proposed approach. Our studies also reveal that the proposed model benefits from a short-cut that bridges the source and target sequences with a single recurrent layer, which outperforms its deep counterpart.


Injecting Hierarchy with U-Net Transformers

arXiv.org Machine Learning

The Transformer architecture has become increasingly popular over the past couple of years, owing to its impressive performance on a number of natural language processing (NLP) tasks. However, it may be argued that the Transformer architecture lacks an explicit hierarchical representation, as all computations occur on word-level representations alone, and therefore, learning structure poses a challenge for Transformer models. In the present work, we introduce hierarchical processing into the Transformer model, taking inspiration from the U-Net architecture, popular in computer vision for its hierarchical view of natural images. We propose a novel architecture that combines ideas from Transformer and U-Net models to incorporate hierarchy at multiple levels of abstraction. We empirically demonstrate that the proposed architecture outperforms the vanilla Transformer and strong baselines in the chit-chat dialogue and machine translation domains.


The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation

arXiv.org Artificial Intelligence

The past year has witnessed rapid advances in sequence-to-sequence (seq2seq) modeling for Machine Translation (MT). The classic RNN-based approaches to MT were first out-performed by the convolutional seq2seq model, which was then out-performed by the more recent Transformer model. Each of these new approaches consists of a fundamental architecture accompanied by a set of modeling and training techniques that are in principle applicable to other seq2seq architectures. In this paper, we tease apart the new architectures and their accompanying techniques in two ways. First, we identify several key modeling and training techniques, and apply them to the RNN architecture, yielding a new RNMT+ model that outperforms all of the three fundamental architectures on the benchmark WMT'14 English to French and English to German tasks. Second, we analyze the properties of each fundamental seq2seq architecture and devise new hybrid architectures intended to combine their strengths. Our hybrid models obtain further improvements, outperforming the RNMT+ model on both benchmark datasets.