Flexible Models for Microclustering with Application to Entity Resolution

Neural Information Processing Systems

Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman-Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.


Propagation of Delays in the National Airspace System

arXiv.org Artificial Intelligence

The National Airspace System (NAS) is a large and complex system with thousands of interrelated components: administration, control centers, airports, airlines, aircraft, passengers, etc. The complexity of the NAS creates many difficulties in management and control. One of the most pressing problems is flight delay. Delay creates high cost to airlines, complaints from passengers, and difficulties for airport operations. As demand on the system increases, the delay problem becomes more and more prominent. For this reason, it is essential for the Federal Aviation Administration to understand the causes of delay and to find ways to reduce delay. Major contributing factors to delay are congestion at the origin airport, weather, increasing demand, and air traffic management (ATM) decisions such as the Ground Delay Programs (GDP). Delay is an inherently stochastic phenomenon. Even if all known causal factors could be accounted for, macro-level national airspace system (NAS) delays could not be predicted with certainty from micro-level aircraft information. This paper presents a stochastic model that uses Bayesian Networks (BNs) to model the relationships among different components of aircraft delay and the causal factors that affect delays. A case study on delays of departure flights from Chicago O'Hare international airport (ORD) to Hartsfield-Jackson Atlanta International Airport (ATL) reveals how local and system level environmental and human-caused factors combine to affect components of delay, and how these components contribute to the final arrival delay at the destination airport.


A General Framework for Uncertainty Estimation in Deep Learning

arXiv.org Machine Learning

End-to-end learning has recently emerged as a promising technique to tackle the problem of autonomous driving. Existing works show that learning a navigation policy from raw sensor data may reduce the system's reliance on external sensing systems, (e.g. GPS), and/or outperform traditional methods based on state estimation and planning. However, existing end-to-end methods generally trade off performance for safety, hindering their diffusion to real-life applications. For example, when confronted with an input which is radically different from the training data, end-to-end autonomous driving systems are likely to fail, compromising the safety of the vehicle. To detect such failure cases, this work proposes a general framework for uncertainty estimation which enables a policy trained end-to-end to predict not only action commands, but also a confidence about its own predictions. In contrast to previous works, our framework can be applied to any existing neural network and task, without the need to change the network's architecture or loss, or to train the network. In order to do so, we generate confidence levels by forward propagation of input and model uncertainties using Bayesian inference. We test our framework on the task of steering angle regression for an autonomous car, and compare our approach to existing methods with both qualitative and quantitative results on a real dataset. Finally, we show an interesting by-product of our framework: robustness against adversarial attacks.


MOPED: Efficient priors for scalable variational inference in Bayesian deep neural networks

arXiv.org Machine Learning

Variational inference for Bayesian deep neural networks (DNNs) requires specifying priors and approximate posterior distributions for neural network weights. Specifying meaningful weight priors is a challenging problem, particularly for scaling variational inference to deeper architectures involving high dimensional weight space. We propose Bayesian MOdel Priors Extracted from Deterministic DNN (MOPED) method for stochastic variational inference to choose meaningful prior distributions over weight space using deterministic weights derived from the pretrained DNNs of equivalent architecture. We evaluate the proposed approach on multiple datasets and real-world application domains with a range of varying complex model architectures to demonstrate MOPED enables scalable variational inference for Bayesian DNNs. The proposed method achieves faster training convergence and provides reliable uncertainty quantification, without compromising on the accuracy provided by the deterministic DNNs. We also propose hybrid architectures to Bayesian DNNs where deterministic and variational layers are combined to balance computation complexity during prediction phase and while providing benefits of Bayesian inference. We will release the source code for this work.


Modeling Multi-Vehicle Interaction Scenarios Using Gaussian Random Field

arXiv.org Machine Learning

Autonomous vehicles (AV) are expected to navigate in complex traffic scenarios with multiple surrounding vehicles. The correlations between road users vary over time, the degree of which, in theory, could be infinitely large, and thus posing a great challenge in modeling and predicting the driving environment. In this research, we propose a method to reproduce such high-dimensional scenarios in a finitely tractable form by defining a stochastic vector field model in multi-vehicle interactions. We then apply non-parametric Bayesian learning to extract the underlying motion patterns from a large quantity of naturalistic traffic data. We use Gaussian process to model multi-vehicle motion, and Dirichlet process to assign each observation to a specific scenario. We implement the proposed method on NGSim highway and intersection data sets, in which complex multi-vehicle interactions are prevalent. The results show that the proposed method is capable of capturing motion patterns from both settings, without imposing heroic prior, hence can be applied for a wide array of traffic situations. The proposed modeling can enable simulation platforms and other testing methods designed for AV evaluation, to easily model and generate traffic scenarios emulating large scale driving data.