Goto

Collaborating Authors

Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.



New Hybrid Neuro-Evolutionary Algorithms for Renewable Energy and Facilities Management Problems

arXiv.org Machine Learning

This Ph.D. thesis deals with the optimization of several renewable energy resources development as well as the improvement of facilities management in oceanic engineering and airports, using computational hybrid methods belonging to AI to this end. Energy is essential to our society in order to ensure a good quality of life. This means that predictions over the characteristics on which renewable energies depend are necessary, in order to know the amount of energy that will be obtained at any time. The second topic tackled in this thesis is related to the basic parameters that influence in different marine activities and airports, whose knowledge is necessary to develop a proper facilities management in these environments. Within this work, a study of the state-of-the-art Machine Learning have been performed to solve the problems associated with the topics above-mentioned, and several contributions have been proposed: One of the pillars of this work is focused on the estimation of the most important parameters in the exploitation of renewable resources. The second contribution of this thesis is related to feature selection problems. The proposed methodologies are applied to multiple problems: the prediction of $H_s$, relevant for marine energy applications and marine activities, the estimation of WPREs, undesirable variations in the electric power produced by a wind farm, the prediction of global solar radiation in areas from Spain and Australia, really important in terms of solar energy, and the prediction of low-visibility events at airports. All of these practical issues are developed with the consequent previous data analysis, normally, in terms of meteorological variables.


Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019

arXiv.org Machine Learning

Financial time series forecasting is, without a doubt, the top choice of computational intelligence for finance researchers from both academia and financial industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers came up with various models and a vast number of studies have been published accordingly. As such, a significant amount of surveys exist covering ML for financial time series forecasting studies. Lately, Deep Learning (DL) models started appearing within the field, with results that significantly outperform traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting research, there is a lack of review papers that were solely focused on DL for finance. Hence, our motivation in this paper is to provide a comprehensive literature review on DL studies for financial time series forecasting implementations. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, commodity forecasting, but also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Long-Short Term Memory (LSTM). We also tried to envision the future for the field by highlighting the possible setbacks and opportunities, so the interested researchers can benefit.


Dynamic Advisor-Based Ensemble (dynABE): Case Study in Stock Trend Prediction of a Major Critical Metal Producer

arXiv.org Machine Learning

The demand of metals by modern technology has been shifting from common base metals to a variety of minor metals, such as cobalt or indium. The industrial importance and limited geological availability of some minor metals have led to them being considered more "critical," and there is a growing interest in such critical metals and their producing companies. In this research, we create a novel framework, Dynamic Advisor-Based Ensemble (dynABE), to predict the stock trend of major critical metal producers. Specifically, dynABE first utilizes domain knowledge to group the features into different "advisors," each advisor dealing with a particular economic sector. Then through ensembles of weak classifiers, each advisor produces a prediction result, and all the advisors are combined again in a biased online update fashion to dynamically make the final prediction. Based on a misclassification error of 32% for Jinchuan Group's stock (HKG: 2362), we further test a simple stock trading strategy, which leads to a back-tested return of 296%, or an excess return of 130% within one year. In addition, the feature set selected by dynABE also suggests potentially influential factors to metal criticality, because stock prices of major producers influence metal production. Therefore, not only does this research propose a novel framework for specialized stock trend prediction, it also provides domain insights into dynamic features that potentially influence metal criticality.