Goto

Collaborating Authors

New Polynomial Classes for Logic-Based Abduction

AAAI Conferences

We address the problem of propositional logic-based abduction, i.e., the problem of searching for a best explanation for a given propositional observation according to a given propositional knowledge base. We give a general algorithm, based on the notion of projection; then we study restrictions over the representations of the knowledge base and of the query, and find new polynomial classes of abduction problems.



Survey on Models and Techniques for Root-Cause Analysis

arXiv.org Artificial Intelligence

Automation and computer intelligence to support complex human decisions becomes essential to manage large and distributed systems in the Cloud and IoT era. Understanding the root cause of an observed symptom in a complex system has been a major problem for decades. As industry dives into the IoT world and the amount of data generated per year grows at an amazing speed, an important question is how to find appropriate mechanisms to determine root causes that can handle huge amounts of data or may provide valuable feedback in real-time. While many survey papers aim at summarizing the landscape of techniques for modelling system behavior and infering the root cause of a problem based in the resulting models, none of those focuses on analyzing how the different techniques in the literature fit growing requirements in terms of performance and scalability. In this survey, we provide a review of root-cause analysis, focusing on these particular aspects. We also provide guidance to choose the best root-cause analysis strategy depending on the requirements of a particular system and application.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Logical Formalizations of Commonsense Reasoning: A Survey

Journal of Artificial Intelligence Research

Commonsense reasoning is in principle a central problem in artificial intelligence, but it is a very difficult one. One approach that has been pursued since the earliest days of the field has been to encode commonsense knowledge as statements in a logic-based representation language and to implement commonsense reasoning as some form of logical inference. This paper surveys the use of logic-based representations of commonsense knowledge in artificial intelligence research.