Collaborating Authors

Coordinating Measurements in Uncertain Participatory Sensing Settings

Journal of Artificial Intelligence Research

Environmental monitoring allows authorities to understand the impact of potentially harmful phenomena, such as air pollution, excessive noise, and radiation. Recently, there has been considerable interest in participatory sensing as a paradigm for such large-scale data collection because it is cost-effective and able to capture more fine-grained data than traditional approaches that use stationary sensors scattered in cities. In this approach, ordinary citizens (non-expert contributors) collect environmental data using low-cost mobile devices. However, these participants are generally self-interested actors that have their own goals and make local decisions about when and where to take measurements. This can lead to highly inefficient outcomes, where observations are either taken redundantly or do not provide sufficient information about key areas of interest. To address these challenges, it is necessary to guide and to coordinate participants, so they take measurements when it is most informative. To this end, we develop a computationally-efficient coordination algorithm (adaptive Best-Match) that suggests to users when and where to take measurements. Our algorithm exploits probabilistic knowledge of human mobility patterns, but explicitly considers the uncertainty of these patterns and the potential unwillingness of people to take measurements when requested to do so. In particular, our algorithm uses a local search technique, clustering and random simulations to map participants to measurements that need to be taken in space and time. We empirically evaluate our algorithm on a real-world human mobility and air quality dataset and show that it outperforms the current state of the art by up to 24% in terms of utility gained.

Combating Fake News: A Survey on Identification and Mitigation Techniques Machine Learning

The proliferation of fake news on social media has opened up new directions of research for timely identification and containment of fake news, and mitigation of its widespread impact on public opinion. While much of the earlier research was focused on identification of fake news based on its contents or by exploiting users' engagements with the news on social media, there has been a rising interest in proactive intervention strategies to counter the spread of misinformation and its impact on society. In this survey, we describe the modern-day problem of fake news and, in particular, highlight the technical challenges associated with it. We discuss existing methods and techniques applicable to both identification and mitigation, with a focus on the significant advances in each method and their advantages and limitations. In addition, research has often been limited by the quality of existing datasets and their specific application contexts. To alleviate this problem, we comprehensively compile and summarize characteristic features of available datasets. Furthermore, we outline new directions of research to facilitate future development of effective and interdisciplinary solutions.

A Survey of Available Corpora for Building Data-Driven Dialogue Systems Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.

Survey on Evaluation Methods for Dialogue Systems Artificial Intelligence

In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class.