This paper is concerned with finding a solution x to a quadratic system of equations y_i = |< a_i, x >|^2, i = 1, 2, ..., m. We prove that it is possible to solve unstructured quadratic systems in n variables exactly from O(n) equations in linear time, that is, in time proportional to reading and evaluating the data. This is accomplished by a novel procedure, which starting from an initial guess given by a spectral initialization procedure, attempts to minimize a non-convex objective. The proposed algorithm distinguishes from prior approaches by regularizing the initialization and descent procedures in an adaptive fashion, which discard terms bearing too much influence on the initial estimate or search directions. These careful selection rules---which effectively serve as a variance reduction scheme---provide a tighter initial guess, more robust descent directions, and thus enhanced practical performance. Further, this procedure also achieves a near-optimal statistical accuracy in the presence of noise. Finally, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least-squares problem of the same size.

Nakerst, Goran, Brennan, John, Haque, Masudul

We consider gradient descent with `momentum', a widely used method for loss function minimization in machine learning. This method is often used with `Nesterov acceleration', meaning that the gradient is evaluated not at the current position in parameter space, but at the estimated position after one step. In this work, we show that the algorithm can be improved by extending this `acceleration' --- by using the gradient at an estimated position several steps ahead rather than just one step ahead. How far one looks ahead in this `super-acceleration' algorithm is determined by a new hyperparameter. Considering a one-parameter quadratic loss function, the optimal value of the super-acceleration can be exactly calculated and analytically estimated. We show explicitly that super-accelerating the momentum algorithm is beneficial, not only for this idealized problem, but also for several synthetic loss landscapes and for the MNIST classification task with neural networks. Super-acceleration is also easy to incorporate into adaptive algorithms like RMSProp or Adam, and is shown to improve these algorithms.

Wang, Gang, Giannakis, Georgios, Saad, Yousef, Chen, Jie

This paper deals with finding an $n$-dimensional solution $\bm{x}$ to a system of quadratic equations $y_i=|\langle\bm{a}_i,\bm{x}\rangle|^2$, $1\le i \le m$, which in general is known to be NP-hard. We put forth a novel procedure, that starts with a \emph{weighted maximal correlation initialization} obtainable with a few power iterations, followed by successive refinements based on \emph{iteratively reweighted gradient-type iterations}. The novel techniques distinguish themselves from prior works by the inclusion of a fresh (re)weighting regularization. For certain random measurement models, the proposed procedure returns the true solution $\bm{x}$ with high probability in time proportional to reading the data $\{(\bm{a}_i;y_i)\}_{1\le i \le m}$, provided that the number $m$ of equations is some constant $c>0$ times the number $n$ of unknowns, that is, $m\ge cn$. Empirically, the upshots of this contribution are: i) perfect signal recovery in the high-dimensional regime given only an \emph{information-theoretic limit number} of equations; and, ii) (near-)optimal statistical accuracy in the presence of additive noise. Extensive numerical tests using both synthetic data and real images corroborate its improved signal recovery performance and computational efficiency relative to state-of-the-art approaches.

Jagatap, Gauri, Hegde, Chinmay

We consider the problem of recovering a signal x in R^n, from magnitude-only measurements, y_i = |a_i^T x| for i={1,2...m}. Also known as the phase retrieval problem, it is a fundamental challenge in nano-, bio- and astronomical imaging systems, astronomical imaging, and speech processing. The problem is ill-posed, and therefore additional assumptions on the signal and/or the measurements are necessary. In this paper, we first study the case where the underlying signal x is s-sparse. We develop a novel recovery algorithm that we call Compressive Phase Retrieval with Alternating Minimization, or CoPRAM. Our algorithm is simple and can be obtained via a natural combination of the classical alternating minimization approach for phase retrieval, with the CoSaMP algorithm for sparse recovery. Despite its simplicity, we prove that our algorithm achieves a sample complexity of O(s^2 log n) with Gaussian samples, which matches the best known existing results. It also demonstrates linear convergence in theory and practice and requires no extra tuning parameters other than the signal sparsity level s. We then consider the case where the underlying signal x arises from to structured sparsity models. We specifically examine the case of block-sparse signals with uniform block size of b and block sparsity k=s/b. For this problem, we design a recovery algorithm that we call Block CoPRAM that further reduces the sample complexity to O(ks log n). For sufficiently large block lengths of b=Theta(s), this bound equates to O(s log n). To our knowledge, this constitutes the first end-to-end linearly convergent family of algorithms for phase retrieval where the Gaussian sample complexity has a sub-quadratic dependence on the sparsity level of the signal.

Wang, Gang, Giannakis, Georgios

We prove that as soon as the number of equations $m$ is on the order of the number of unknowns $n$, TGGF recovers the solution exactly (up to a global unimodular constant) with high probability and complexity growing linearly with the time required to read the data $\left\{\left(\bm{a}_i;\,y_i\right)\right\}_{i 1} m$. Specifically, TGGF proceeds in two stages: s1) A novel \emph{orthogonality-promoting} initialization that is obtained with simple power iterations; and, s2) a refinement of the initial estimate by successive updates of scalable \emph{truncated generalized gradient iterations}. The former is in sharp contrast to the existing spectral initializations, while the latter handles the rather challenging nonconvex and nonsmooth \emph{amplitude-based} cost function. Numerical tests demonstrate that: i) The novel orthogonality-promoting initialization method returns more accurate and robust estimates relative to its spectral counterparts; and ii) even with the same initialization, our refinement/truncation outperforms Wirtinger-based alternatives, all corroborating the superior performance of TGGF over state-of-the-art algorithms. Papers published at the Neural Information Processing Systems Conference.