Learning Interrogation Strategies while Considering Deceptions in Detective Interactive Stories

AAAI Conferences

The strategies for interactive characters to select appropriate dialogues remain as an open issue in related research areas. In this paper we propose an approach based on reinforcement learning to learn the strategy of interrogation dialogue from one virtual agent toward another. The emotion variation of the suspect agent is modeled with a hazard function, and the detective agent must learn its interrogation strategies based on the emotion state of the suspect agent. The reinforcement learning reward schemes are evaluated to choose the proper reward in the dialogue. Our contribution is twofold. Firstly, we proposed a new framework of reinforcement learning to model dialogue strategies. Secondly, background knowledge and emotion states of agents are brought into the dialogue strategies. The resulted dialogue strategy in our experiment is sensitive in detecting lies from the suspect, and with it the interrogator may receive more correct answer.


On Memory Mechanism in Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) extends (single-agent) reinforcement learning (RL) by introducing additional agents and (potentially) partial observability of the environment. Consequently, algorithms for solving MARL problems incorporate various extensions beyond traditional RL methods, such as a learned communication protocol between cooperative agents that enables exchange of private information or adaptive modeling of opponents in competitive settings. One popular algorithmic construct is a memory mechanism such that an agent's decisions can depend not only upon the current state but also upon the history of observed states and actions. In this paper, we study how a memory mechanism can be useful in environments with different properties, such as observability, internality and presence of a communication channel. Using both prior work and new experiments, we show that a memory mechanism is helpful when learning agents need to model other agents and/or when communication is constrained in some way; however we must to be cautious of agents achieving effective memoryfulness through other means.


Perturbation Training for Human-Robot Teams

Journal of Artificial Intelligence Research

In this work, we design and evaluate a computational learning model that enables a human-robot team to co-develop joint strategies for performing novel tasks that require coordination. The joint strategies are learned through "perturbation training," a human team-training strategy that requires team members to practice variations of a given task to help their team generalize to new variants of that task. We formally define the problem of human-robot perturbation training and develop and evaluate the first end-to-end framework for such training, which incorporates a multi-agent transfer learning algorithm, human-robot co-learning framework and communication protocol. Our transfer learning algorithm, Adaptive Perturbation Training (AdaPT), is a hybrid of transfer and reinforcement learning techniques that learns quickly and robustly for new task variants. We empirically validate the benefits of AdaPT through comparison to other hybrid reinforcement and transfer learning techniques aimed at transferring knowledge from multiple source tasks to a single target task. We also demonstrate that AdaPT's rapid learning supports live interaction between a person and a robot, during which the human-robot team trains to achieve a high level of performance for new task variants. We augment AdaPT with a co-learning framework and a computational bi-directional communication protocol so that the robot can co-train with a person during live interaction. Results from large-scale human subject experiments (n=48) indicate that AdaPT enables an agent to learn in a manner compatible with a human's own learning process, and that a robot undergoing perturbation training with a human results in a high level of team performance. Finally, we demonstrate that human-robot training using AdaPT in a simulation environment produces effective performance for a team incorporating an embodied robot partner.


Sample Efficient On-Line Learning of Optimal Dialogue Policies with Kalman Temporal Differences

AAAI Conferences

Designing dialog policies for voice-enabled interfaces is a tailoring job that is most often left to natural language processing experts. This job is generally redone for every new dialog task because cross-domain transfer is not possible. For this reason, machine learning methods for dialog policy optimization have been investigated during the last 15 years. Especially, reinforcement learning (RL) is now part of the state of the art in this domain. Standard RL methods require to test more or less random changes in the policy on users to assess them as improvements or degradations. This is called on policy learning. Nevertheless, it can result in system behaviors that are not acceptable by users. Learning algorithms should ideally infer an optimal strategy by observing interactions generated by a non-optimal but acceptable strategy, that is learning off-policy. In this contribution, a sample-efficient, online and off-policy reinforcement learning algorithm is proposed to learn an optimal policy from few hundreds of dialogues generated with a very simple handcrafted policy.


A Deep Reinforcement Learning Chatbot

arXiv.org Machine Learning

We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through both speech and text. The system consists of an ensemble of natural language generation and retrieval models, including template-based models, bag-of-words models, sequence-to-sequence neural network and latent variable neural network models. By applying reinforcement learning to crowdsourced data and real-world user interactions, the system has been trained to select an appropriate response from the models in its ensemble. The system has been evaluated through A/B testing with real-world users, where it performed significantly better than many competing systems. Due to its machine learning architecture, the system is likely to improve with additional data.