Goto

Collaborating Authors

BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning

arXiv.org Machine Learning

We develop BatchBALD, a tractable approximation to the mutual information between a batch of points and model parameters, which we use as an acquisition function to select multiple informative points jointly for the task of deep Bayesian active learning. BatchBALD is a greedy linear-time $1 - \frac{1}{e}$-approximate algorithm amenable to dynamic programming and efficient caching. We compare BatchBALD to the commonly used approach for batch data acquisition and find that the current approach acquires similar and redundant points, sometimes performing worse than randomly acquiring data. We finish by showing that, using BatchBALD to consider dependencies within an acquisition batch, we achieve new state of the art performance on standard benchmarks, providing substantial data efficiency improvements in batch acquisition.


Information Condensing Active Learning

arXiv.org Machine Learning

We introduce Information Condensing Active Learning (ICAL), a batch mode model agnostic Active Learning (AL) method targeted at Deep Bayesian Active Learning that focuses on acquiring labels for points which have as much information as possible about the still unacquired points. ICAL uses the Hilbert Schmidt Independence Criterion (HSIC) to measure the strength of the dependency between a candidate batch of points and the unlabeled set. We develop key optimizations that allow us to scale our method to large unlabeled sets. We show significant improvements in terms of model accuracy and negative log likelihood (NLL) on several image datasets compared to state of the art batch mode AL methods for deep learning.


Active Learning in CNNs via Expected Improvement Maximization

arXiv.org Artificial Intelligence

Deep learning models such as Convolutional Neural Networks (CNNs) have demonstrated high levels of effectiveness in a variety of domains, including computer vision and more recently, computational biology. However, training effective models often requires assembling and/or labeling large datasets, which may be prohibitively time-consuming or costly. Pool-based active learning techniques have the potential to mitigate these issues, leveraging models trained on limited data to selectively query unlabeled data points from a pool in an attempt to expedite the learning process. Here we present "Dropout-based Expected IMprOvementS" (DEIMOS), a flexible and computationally-efficient approach to active learning that queries points that are expected to maximize the model's improvement across a representative sample of points. The proposed framework enables us to maintain a prediction covariance matrix capturing model uncertainty, and to dynamically update this matrix in order to generate diverse batches of points in the batch-mode setting. Our active learning results demonstrate that DEIMOS outperforms several existing baselines across multiple regression and classification tasks taken from computer vision and genomics.


Semi-supervised Batch Active Learning via Bilevel Optimization

arXiv.org Machine Learning

Active learning is an effective technique for reducing the labeling cost by improving data efficiency. In this work, we propose a novel batch acquisition strategy for active learning in the setting where the model training is performed in a semi-supervised manner. We formulate our approach as a data summarization problem via bilevel optimization, where the queried batch consists of the points that best summarize the unlabeled data pool. We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.


Active Learning: Problem Settings and Recent Developments

arXiv.org Machine Learning

Supervised learning is a typical problem setting for machine learning that approximates the relationship between the input and output based on a given sets of input and output data. The accuracy of the approximation can be increased using more input and output data to build the model; however, obtaining the appropriate output for the input can be costly. A classic example is the crossbreeding of plants. The environmental conditions (e.g., average monthly temperature, type and amount of fertilizer used, watering conditions, weather) are the input, and the specific properties of the crops are the output. In this case, the controllable variables are related to the fertilizer and watering conditions, but it would take several months to years to perform experiments under various conditions and determine the optimal fertilizer composition and watering conditions.