Anytime Intention Recognition via Incremental Bayesian Network Reconstruction

AAAI Conferences

This paper presents an anytime algorithm for  incremental intention recognition in a changing world.  The algorithm is performed by dynamically constructing the intention recognition model on top of a prior domain knowledge base. The model is occasionally reconfigured by situating itself in the changing world and removing newly found out irrelevant intentions. We also discuss some approaches to knowledge base representation for supporting situation-dependent model construction. Reconfigurable Bayesian Networks are employed to produce the intention recognition model.

Procedural help in Andes: Generating hints using a Bayesian network student model

AAAI Conferences

One of the most important problems for an intelligent tutoring system is deciding how to respond when a student asks for help. Responding cooperatively requires an understanding of both what solution path the student is pursuing, and the student's current level of domain knowledge. Andes, an intelligent tutoring system for Newtonian physics, refers to a probabilistic student model to make decisions about responding to help requests. Andes' student model uses a Bayesian network that computes a probabilistic assessment of three kinds of information: (1) the student's general knowledge about physics, (2) the student's specific knowledge about the current problem, and (3) the abstract plans that the student may be pursuing to solve the problem. Using this model, Andes provides feedback and hints tailored to the student's knowledge and goals.

Plan Recognition in Stories and in Life Artificial Intelligence

Plan recognition does not work the same way in stories and in "real life" (people tend to jump to conclusions more in stories). We present a theory of this, for the particular case of how objects in stories (or in life) influence plan recognition decisions. We provide a Bayesian network formalization of a simple first-order theory of plans, and show how a particular network parameter seems to govern the difference between "life-like" and "story-like" response. We then show why this parameter would be influenced (in the desired way) by a model of speaker (or author) topic selection which assumes that facts in stories are typically "relevant".

Beating the Defense: Using Plan Recognition to Inform Learning Agents

AAAI Conferences

In this paper, we investigate the hypothesis that plan recognition can significantly improve the performance of a case-based reinforcement learner in an adversarial action selection task. Our environment is a simplification of an American football game. The performance task is to control the behavior of a quarterback in a pass play, where the goal is to maximize yardage gained. Plan recognition focuses on predicting the play of the defensive team. We modeled plan recognition as an unsupervised learning task, and conducted a lesion study. We found that plan recognition was accurate, and that it significantly improved performance. More generally, our studies show that plan recognition reduced the dimensionality of the state space, which allowed learning to be conducted more effectively. We describe the algorithms, explain the reasons for performance improvement, and also describe a further empirical comparison that highlights the utility of plan recognition for this task.