Goto

Collaborating Authors

Scalable Global Optimization via Local Bayesian Optimization

Neural Information Processing Systems

Bayesian optimization has recently emerged as a popular method for the sample-efficient optimization of expensive black-box functions. However, the application to high-dimensional problems with several thousand observations remains challenging, and on difficult problems Bayesian optimization is often not competitive with other paradigms. In this paper we take the view that this is due to the implicit homogeneity of the global probabilistic models and an overemphasized exploration that results from global acquisition. We propose the TuRBO algorithm that fits a collection of local models and performs a principled global allocation of samples across these models via an implicit bandit approach. A comprehensive evaluation demonstrates that TuRBO outperforms state-of-the-art methods from machine learning and operations research on problems spanning reinforcement learning, robotics, and the natural sciences.


Bayesian Variational Optimization for Combinatorial Spaces

arXiv.org Machine Learning

This paper focuses on Bayesian Optimization in combinatorial spaces. In many applications in the natural science. Broad applications include the study of molecules, proteins, DNA, device structures and quantum circuit designs, a on optimization over combinatorial categorical spaces is needed to find optimal or pareto-optimal solutions. However, only a limited amount of methods have been proposed to tackle this problem. Many of them depend on employing Gaussian Process for combinatorial Bayesian Optimizations. Gaussian Processes suffer from scalability issues for large data sizes as their scaling is cubic with respect to the number of data points. This is often impractical for optimizing large search spaces. Here, we introduce a variational Bayesian optimization method that combines variational optimization and continuous relaxations to the optimization of the acquisition function for Bayesian optimization. Critically, this method allows for gradient-based optimization and has the capability of optimizing problems with large data size and data dimensions. We have shown the performance of our method is comparable to state-of-the-art methods while maintaining its scalability advantages. We also applied our method in molecular optimization.


Bayesian Optimization for Selecting Efficient Machine Learning Models

#artificialintelligence

The performance of many machine learning models depends on their hyper-parameter settings. Bayesian Optimization has become a successful tool for hyper-parameter optimization of machine learning algorithms, which aims to identify optimal hyper-parameters during an iterative sequential process. However, most of the Bayesian Optimization algorithms are designed to select models for effectiveness only and ignore the important issue of model training efficiency. Given that both model effectiveness and training time are important for real-world applications, models selected for effectiveness may not meet the strict training time requirements necessary to deploy in a production environment. In this work, we present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency. We propose an objective that captures the tradeoff between these two metrics and demonstrate how we can jointly optimize them in a principled Bayesian Optimization framework.


Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach

Neural Information Processing Systems

We consider the problem of optimizing an expensive objective function when a finite budget of total evaluations is prescribed. In that context, the optimal solution strategy for Bayesian optimization can be formulated as a dynamic programming instance. We show how to approximate the solution of this dynamic programming problem using rollout, and propose rollout heuristics specifically designed for the Bayesian optimization setting. We present numerical experiments showing that the resulting algorithm for optimization with a finite budget outperforms several popular Bayesian optimization algorithms. Papers published at the Neural Information Processing Systems Conference.


Multi-Task Bayesian Optimization

Neural Information Processing Systems

Bayesian optimization has recently been proposed as a framework for automatically tuning the hyperparameters of machine learning models and has been shown to yield state-of-the-art performance with impressive ease and efficiency. In this paper, we explore whether it is possible to transfer the knowledge gained from previous optimizations to new tasks in order to find optimal hyperparameter settings more efficiently. Our approach is based on extending multi-task Gaussian processes to the framework of Bayesian optimization. We show that this method significantly speeds up the optimization process when compared to the standard single-task approach. We further propose a straightforward extension of our algorithm in order to jointly minimize the average error across multiple tasks and demonstrate how this can be used to greatly speed up $k$-fold cross-validation.