A Multi-Domain Evaluation of Scaling in a General Episodic Memory

AAAI Conferences

Episodic memory endows agents with numerous general cognitive capabilities, such as action modeling and virtual sensing. However, for long-lived agents, there are numerous unexplored computational challenges in supporting useful episodic-memory functions while maintaining real-time reactivity. In this paper, we review the implementation of episodic memory in Soar and present an expansive evaluation of that system. We demonstrate useful applications of episodic memory across a variety of domains, including games, mobile robotics, planning, and linguistics. In these domains, we characterize properties of environments, tasks, and episodic cues that affect performance, and evaluate the ability of Soar’s episodic memory to support hours to days of real-time operation.



Preemptive Strategies for Overcoming the Forgetting of Goals

AAAI Conferences

Maintaining and pursuing multiple goals over varying time scales is an important ability for artificial agents in many cognitive architectures. Goals that remain suspended for long periods, however, are prone to be forgotten. This paper presents a class of preemptive strategies that allow agents to selectively retain goals in memory and to recover forgotten goals. Preemptive strategies work by retrieving and rehearsing goals at triggers, which are either periodic or are predictive of the opportunity to act. Since cognitive architectures contain common hierarchies of memory systems and share similar forgetting mechanisms, these strategies work across multiple architectures. We evaluate their effectiveness in a simulated mobile robot controlled by Soar, and demonstrate how preemptive strategies can be adapted to different environments and agents.


Derbinsky

AAAI Conferences

This paper documents a functionality-driven exploration of automatic working-memory management in Soar. We first derive and discuss desiderata that arise from the need to embed a mechanism for managing working memory within a general cognitive architecture that is used to develop real-time agents. We provide details of our mechanism, including the decay model and architecture-independent data structures and algorithms that are computationally efficient. Finally, we present empirical results, which demonstrate both that our mechanism performs with little computational overhead and that it helps maintain the reactivity of a Soar agent contending with long-term, autonomous simulated robotic exploration as it reasons using large amounts of acquired information.


A Functional Analysis of Historical Memory Retrieval Bias in the Word Sense Disambiguation Task

AAAI Conferences

Effective access to knowledge within large declarative memory stores is one challenge in the development and understanding of long-living, generally intelligent agents. We focus on a sub-component of this problem: given a large store of knowledge, how should an agent's task-independent memory mechanism respond to an ambiguous cue, one that pertains to multiple previously encoded memories. A large body of cognitive modeling work suggests that human memory retrievals are biased in part by the recency and frequency of past memory access. In this paper, we evaluate the functional benefit of a set of memory retrieval heuristics that incorporate these biases, in the context of the word sense disambiguation task, in which an agent must identify the most appropriate word meaning in response to an ambiguous linguistic cue. In addition, we develop methods to integrate these retrieval biases within a task-independent declarative memory system implemented in the Soar cognitive architecture and evaluate their effectiveness and efficiency in three commonly used semantic concordances.