Goto

Collaborating Authors


Context-Dependent Classes in a Hybrid Recurrent Network-HMM Speech Recognition System

Neural Information Processing Systems

A method for incorporating context-dependent phone classes in a connectionist-HMM hybrid speech recognition system is introduced. Amodular approach is adopted, where single-layer networks discriminate between different context classes given the phone class and the acoustic data. The context networks are combined with a context-independent (CI) network to generate context-dependent (CD) phone probability estimates. Experiments show an average reduction in word error rate of 16% and 13% from the CI system on ARPA 5,000 word and SQALE 20,000 word tasks respectively. Due to improved modelling, the decoding speed of the CD system is more than twice as fast as the CI system.


Hawes

AAAI Conferences

In order to collaborate with people in the real world, cognitive systems must be able to represent and reason about spatial regions in human environments. Consider the command "go to the front of the classroom". The spatial region mentioned (the front of the classroom) is not perceivable using geometry alone. Instead it is defined by its functional use, implied by nearby objects and their configuration. In this paper, we define such areas as context-dependent spatial regions and present a cognitive system able to learn them by combining qualitative spatial representations, semantic labels, and analogy. The system is capable of generating a collection of qualitative spatial representations describing the configuration of the entities it perceives in the world. It can then be taught context-dependent spatial regions using anchor pointsdefined on these representations. From this we then demonstrate how an existing computational model of analogy can be used to detect context-dependent spatial regions in previously unseen rooms. To evaluate this process we compare detected regions to annotations made on maps of real rooms by human volunteers.


Klenk

AAAI Conferences

In order to collaborate with people in the real world, cognitive systems must be able to represent and reason about spatial regions in human environments. Consider the command "go to the front of the classroom". The spatial region mentioned (the front of the classroom) is not perceivable using geometry alone. Instead it is defined by its functional use, implied by nearby objects and their configuration. In this paper, we define such areas as context-dependent spatial regions and propose a method for a cognitive system to learn them incrementally by combining qualitative spatial representations, semantic labels, and analogy. Using data from a mobile robot, we generate a relational representation of semantically labeled objects and their configuration. Next, we show how the boundary of a context-dependent spatial region can be defined using anchor points. Finally, we demonstrate how an existing computational model of analogy can be used to transfer this region to a new situation.


Tatistical Context-Dependent Units Boundary Correction for Corpus-based Unit-Selection Text-to-Speech

arXiv.org Machine Learning

Unlike conventional techniques for speaker adaptation, which attempt to improve the accuracy of the segmentation using acoustic models that are more robust in the face of the speaker's characteristics, we aim to use only context dependent characteristics extrapolated with linguistic analysis techniques. In simple terms, we use the intuitive idea that context dependent information is tightly correlated with the related acoustic waveform. We propose a statistical model, which predicts correcting values to reduce the systematic error produced by a state-of-the-art Hidden Markov Model (HMM) based speech segmentation. In other words, we can predict how HMM-based Automatic Speech Recognition (ASR) systems interpret the waveform signal determining the systematic error in different contextual scenarios. Our approach consists of two phases: (1) identifying contextdependent phonetic unit classes (for instance, the class which identifies vowels as being the nucleus of monosyllabic words); and (2) building a regression model that associates the mean error value made by the ASR during the segmentation of a single speaker corpus to each class. The success of the approach is evaluated by comparing the corrected boundaries of units and the state-of-the-art HHM segmentation against a reference alignment, which is supposed to be the optimal solution. The results of this study show that the contextdependent correction of units' boundaries has a positive influence on the forced alignment, especially when the misinterpretation of the phone is driven by acoustic properties linked to the speaker's phonetic characteristics. In conclusion, our work supplies a first analysis of a model sensitive to speaker-dependent characteristics, robust to defective and noisy information, and a very simple implementation which could be utilized as an alternative to either more expensive speaker-adaptation systems or of numerous manual correction sessions.