Stochastic Online Greedy Learning with Semi-bandit Feedbacks

Neural Information Processing Systems

The greedy algorithm is extensively studied in the field of combinatorial optimization for decades. In this paper, we address the online learning problem when the input to the greedy algorithm is stochastic with unknown parameters that have to be learned over time. We first propose the greedy regret and $\epsilon$-quasi greedy regret as learning metrics comparing with the performance of offline greedy algorithm. We then propose two online greedy learning algorithms with semi-bandit feedbacks, which use multi-armed bandit and pure exploration bandit policies at each level of greedy learning, one for each of the regret metrics respectively. Both algorithms achieve $O(\log T)$ problem-dependent regret bound ($T$ being the time horizon) for a general class of combinatorial structures and reward functions that allow greedy solutions.

Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models

Neural Information Processing Systems

Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with non-zero coefficients and reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. We prove strong theoretical results showing that this procedure is effective in learning sparse representations. Experimental results support our theory.

The Power of Verification for Greedy Mechanism Design

Journal of Artificial Intelligence Research

Greedy algorithms are known to provide, in polynomial time, near optimal approximation guarantees for Combinatorial Auctions (CAs) with multidimensional bidders. It is known that truthful greedy-like mechanisms for CAs with multi-minded bidders do not achieve good approximation guarantees. In this work, we seek a deeper understanding of greedy mechanism design and investigate under which general assumptions, we can have efficient and truthful greedy mechanisms for CAs. Towards this goal, we use the framework of priority algorithms and weak and strong verification, where the bidders are not allowed to overbid on their winning set or on any subset of this set, respectively. We provide a complete characterization of the power of weak verification showing that it is sufficient and necessary for any greedy fixed priority algorithm to become truthful with the use of money or not, depending on the ordering of the bids.

Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time

Neural Information Processing Systems

A deterministic approximation algorithm is presented for the maximization of non-monotone submodular functions over a ground set of size $n$ subject to cardinality constraint $k$; the algorithm is based upon the idea of interlacing two greedy procedures. The algorithm uses interlaced, thresholded greedy procedures to obtain tight ratio $1/4 - \epsilon$ in $O \left( \frac{n}{\epsilon} \log \left( \frac{k}{\epsilon} \right) \right)$ queries of the objective function, which improves upon both the ratio and the quadratic time complexity of the previously fastest deterministic algorithm for this problem. The algorithm is validated in the context of two applications of non-monotone submodular maximization, on which it outperforms the fastest deterministic and randomized algorithms in prior literature. Papers published at the Neural Information Processing Systems Conference.

A General Greedy Approximation Algorithm with Applications

Neural Information Processing Systems

Greedy approximation algorithms have been frequently used to obtain sparse solutions to learning problems. In this paper, we present a general greedy algorithm for solving a class of convex optimization problems. We derive a bound on the rate of approximation for this algorithm, and show that our algorithm includes a number of earlier studies as special cases.