Collaborating Authors

Coordination of Human-Robot Teaming with Human Task Preferences

AAAI Conferences

Advanced robotic technology is opening up the possibility of integrating robots into the human workspace to improve productivity and decrease the strain of repetitive, arduous physical tasks currently performed by human workers. However, coordinating these teams is a challenging problem. We must understand how decision-making authority over scheduling decisions should be shared between team members and how the preferences of the team members should be included. We report the results of a human-subject experiment investigating how a robotic teammate should best incorporate the preferences of human teammates into the team's schedule. We find that humans would rather work with a robotic teammate that accounts for their preferences, but this desire might be mitigated if their preferences come at the expense of team efficiency.

Apprenticeship Scheduling for Human-Robot Teams

AAAI Conferences

Resource optimization and scheduling is a costly, challenging problem that affects almost every aspect of our lives. One example that affects each of us is health care: Poor systems design and scheduling of resources can lead to higher rates of patient noncompliance and burnout of health care providers, as highlighted by the Institute of Medicine (Brandenburg et al. 2015). In aerospace manufacturing, every minute re-scheduling in response to dynamic disruptions in the build process of a Boeing 747 can cost up to $100.000. The military is also highly invested in the effective use of resources. In missile defense, for example, operators must =solve a challenging weapon-to-target problem, balancing the cost of expendable, defensive weapons while hedging against uncertainty in adversaries’ tactics. Researchers in artificial intelligence (AI) planning and scheduling strive to develop algorithms to improve resource allocation. However, there are two primary challenges. First, optimal task allocation and sequencing with upper and lower-bound temporal constraints (i.e., deadlines and wait constraints) is NP-Hard (Bertsimas and Weismantel 2005). Approximation techniques for scheduling exist and typically rely on the algorithm designer crafting heuristics based on domain expertise to decompose or structure the scheduling problem and prioritize the manner in which resources are allocated and tasks are sequenced (Tang and Parker 2005; Jones, Dias, and Stentz 2011). The second problem is this aforementioned reliance on crafting clever heuristics based on domain knowledge. Manually capturing domain knowledge within a scheduling algorithm remains a challenging process and leaves much to be desired (Ryan et al. 2013). The aim of my thesis is to develop an autonomous system that 1) learns the heuristics and implicit rules-of-thumb developed by domain experts from years of experience, 2) embeds and leverages this knowledge within a scalable resource optimization framework, and 3) provides decision support in a way that engages users and benefits them in their decision-making process. By intelligently leveraging the ability of humans to learn heuristics and the speed of modern computation, we can improve the ability to coordinate resources in these time and safety-critical domains.

Who Takes the Lead? Automated Scheduling for Human-Robot Teams

AAAI Conferences

Scheduling interactions between humans and robots presents unique challenges — while robots do not have humans' natural ability to improvise and adapt to new setbacks, humans are not able to work with the same precision as robots. Additionally, hesitation, interruptions, and anticipatory action all influence a human's perception and efficiency in social tasks, but are not inherent features of current algorithms.This paper explores both the challenges and opportunities of automated scheduling as a useful tool for human-robot interactions.We contribute an initial exploratory pilot study that suggests that when a robot takes the lead in dictating a schedule, there are gains in team efficiency without loss of humans' perceived comfort.


AAAI Conferences

We study the scheduling of human-robot teams where the human and robotic agents share decision-making authority over scheduling decisions. Our goal is to design AI scheduling techniques that account for how people make decisions under different control schema.