Goto

Collaborating Authors

Deeb-Swihart

AAAI Conferences

Carefully managing the presentation of self via technology is a core practice on all modern social media platforms. Recently, selfies have emerged as a new, pervasive genre of identity performance. In many ways unique, selfies bring us full-circle to Goffman -- blending the online and offline selves together. In this paper, we take an empirical, Goffman-inspired look at the phenomenon of selfies. We report a large-scale, mixed-method analysis of the categories in which selfies appear on Instagram -- an online community comprising over 400M people. Applying computer vision and network analysis techniques to 2.5M selfies, we present a typology of emergent selfie categories which represent emphasized identity statements. To the best of our knowledge, this is the first large-scale, empirical research on selfies. We conclude, contrary to common portrayals in the press, that selfies are really quite ordinary: they project identity signals such as wealth, health and physical attractiveness common to many online media, and to offline life.


What We Instagram: A First Analysis of Instagram Photo Content and User Types

AAAI Conferences

Instagram is a relatively new form of communication where users can easily share their updates by taking photos and tweaking them using filters. It has seen rapid growth in the number of users as well as uploads since it was launched in October 2010. In spite of the fact that it is the most popular photo capturing and sharing application, it has attracted relatively less attention from the research community. In this paper, we present both qualitative and quantitative analysis on Instagram. We use computer vision techniques to examine the photo content. Based on that, we identify the different types of active users on Instagram using clustering. Our results reveal several insights about Instagram which were never studied before, that include: 1) Eight popular photos categories, 2) Five distinct types of Instagram users in terms of their posted photos, and 3) A user's audience (number of followers) is independent of his/her shared photos on Instagram. To our knowledge, this is the first in-depth study of content and users on Instagram.


From Camera to Deathbed: Understanding Dangerous Selfies on Social Media

AAAI Conferences

Selfie culture has emerged as a ubiquitous instrument for self portrayal in recent years. To portray themselves differently and attractive to others, individuals may risk their life by clicking selfies in dangerous situations. Consequently, selfies have claimed 137 lives around the world since March 2014 until December 2016. In this work, we perform a comprehensiv analysis of the reported selfie-casualties and note various reasons behind these deaths. We perform an in-depth analysis of such selfies posted on social media to identify dangerous selfies and explore a series of statistical models to predict dangerous posts. We find that our multimodal classifier using combination of text-based, image-based and location-based features performs the best in spotting dangerous selfies. Our classifier is trained on 6K annotated selfies collected on Twitter and gives 82% accuracy for identifying whether a selfie posted on Twitter is dangerous or not.


Fashion Conversation Data on Instagram

arXiv.org Machine Learning

The fashion industry is establishing its presence on a number of visual-centric social media like Instagram. This creates an interesting clash as fashion brands that have traditionally practiced highly creative and editorialized image marketing now have to engage with people on the platform that epitomizes impromptu, realtime conversation. What kinds of fashion images do brands and individuals share and what are the types of visual features that attract likes and comments? In this research, we take both quantitative and qualitative approaches to answer these questions. We analyze visual features of fashion posts first via manual tagging and then via training on convolutional neural networks. The classified images were examined across four types of fashion brands: mega couture, small couture, designers, and high street. We find that while product-only images make up the majority of fashion conversation in terms of volume, body snaps and face images that portray fashion items more naturally tend to receive a larger number of likes and comments by the audience. Our findings bring insights into building an automated tool for classifying or generating influential fashion information. We make our novel dataset of {24,752} labeled images on fashion conversations, containing visual and textual cues, available for the research community.


Fashion Conversation Data on Instagram

AAAI Conferences

The fashion industry is establishing its presence on a number of visual-centric social media like Instagram. This creates an interesting clash as fashion brands that have traditionally practiced highly creative and editorialized image marketing now have to engage with people on the platform that epitomizes impromptu, realtime conversation. What kinds of fashion images do brands and individuals share and what are the types of visual features that attract likes and comments? In this research, we take both quantitative and qualitative approaches to answer these questions. We analyze visual features of fashion posts first via manual tagging and then via training on convolutional neural networks. The classified images were examined across four types of fashion brands: mega couture, small couture, designers, and high street. We find that while product-only images make up the majority of fashion conversation in terms of volume, body snaps and face images that portray fashion items more naturally tend to receive a larger number of likes and comments by the audience. Our findings bring insights into building an automated tool for classifying or generating influential fashion information. We make our novel dataset of 24,752 labeled images on fashion conversations, containing visual and textual cues, available for the research community.