Islam, Sheikh Rabiul, Eberle, William, Ghafoor, Sheikh K., Bundy, Sid C., Talbert, Douglas A., Siraj, Ambareen

In the area of credit risk analytics, current Bankruptcy Prediction Models (BPMs) struggle with (a) the availability of comprehensive and real-world data sets and (b) the presence of extreme class imbalance in the data (i.e., very few samples for the minority class) that degrades the performance of the prediction model. Moreover, little research has compared the relative performance of well-known BPM's on public datasets addressing the class imbalance problem. In this work, we apply eight classes of well-known BPMs, as suggested by a review of decades of literature, on a new public dataset named Freddie Mac Single-Family Loan-Level Dataset with resampling (i.e., adding synthetic minority samples) of the minority class to tackle class imbalance. Additionally, we apply some recent AI techniques (e.g., tree-based ensemble techniques) that demonstrate potentially better results on models trained with resampled data. In addition, from the analysis of 19 years (1999-2017) of data, we discover that models behave differently when presented with sudden changes in the economy (e.g., a global financial crisis) resulting in abrupt fluctuations in the national default rate. In summary, this study should aid practitioners/researchers in determining the appropriate model with respect to data that contains a class imbalance and various economic stages.

Kallus, Nathan, Mao, Xiaojie, Zhou, Angela

The increasing impact of algorithmic decisions on people's lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly-color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policymaking, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary dataset, such as the US census, that includes class labels but not decisions or outcomes. We show that a variety of common disparity measures are generally unidentifiable aside for some unrealistic cases, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the sharpest-possible partial identification set of disparities either under no assumptions or when we incorporate mild smoothness constraints. We further provide optimization-based algorithms for computing and visualizing these sets, which enables reliable and robust assessments -- an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing.

Mancisidor, Rogelio A., Kampffmeyer, Michael, Aas, Kjersti, Jenssen, Robert

Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring.

Steinberg, Daniel, Reid, Alistair, O'Callaghan, Simon

Algorithmic fairness involves expressing notions such as equity, or reasonable treatment, as quantifiable measures that a machine learning algorithm can optimise. Most work in the literature to date has focused on classification problems where the prediction is categorical, such as accepting or rejecting a loan application. This is in part because classification fairness measures are easily computed by comparing the rates of outcomes, leading to behaviours such as ensuring that the same fraction of eligible men are selected as eligible women. But such measures are computationally difficult to generalise to the continuous regression setting for problems such as pricing, or allocating payments. The difficulty arises from estimating conditional densities (such as the probability density that a system will over-charge by a certain amount). For the regression setting we introduce tractable approximations of the independence, separation and sufficiency criteria by observing that they factorise as ratios of different conditional probabilities of the protected attributes. We introduce and train machine learning classifiers, distinct from the predictor, as a mechanism to estimate these probabilities from the data. This naturally leads to model agnostic, tractable approximations of the criteria, which we explore experimentally.

So, it is very important to predict the loan type and loan amount based on the banks' data. In this blog post, we will discuss about how Naive Bayes Classification model using R can be used to predict the loans. As there are more than two independent variables in customer data, it is difficult to plot chart as two dimensions are needed to better visualize how Machine Learning models work. In this blog post, Naive Bayes Classification Model with R is used.