A Generalized Multidimensional Evaluation Framework for Player Goal Recognition

AAAI Conferences

Recent years have seen a growing interest in player modeling, which supports the creation of player-adaptive digital games. A central problem of player modeling is goal recognition, which aims to recognize players’ intentions from observable gameplay behaviors. Player goal recognition offers the promise of enabling games to dynamically adjust challenge levels, perform procedural content generation, and create believable NPC interactions. A growing body of work is investigating a wide range of machine learning-based goal recognition models. In this paper, we introduce GOALIE, a multidimensional framework for evaluating player goal recognition models. The framework integrates multiple metrics for player goal recognition models, including two novel metrics, n-early convergence rate and standardized convergence point . We demonstrate the application of the GOALIE framework with the evaluation of several player goal recognition models, including Markov logic network-based, deep feedforward neural network-based, and long short-term memory network-based goal recognizers on two different educational games. The results suggest that GOALIE effectively captures goal recognition behaviors that are key to next-generation player modeling.

Divide and conquer: How Microsoft researchers used AI to master Ms. Pac-Man - Next at Microsoft


Microsoft researchers have created an artificial intelligence-based system that learned how to get the maximum score on the addictive 1980s video game Ms. Pac-Man, using a divide-and-conquer method that could have broad implications for teaching AI agents to do complex tasks that augment human capabilities. The team from Maluuba, a Canadian deep learning startup acquired by Microsoft earlier this year, used a branch of AI called reinforcement learning to play the Atari 2600 version of Ms. Pac-Man perfectly. Using that method, the team achieved the maximum score possible of 999,990. Doina Precup, an associate professor of computer science at McGill University in Montreal said that's a significant achievement among AI researchers, who have been using various videogames to test their systems but have found Ms. Pac-Man among the most difficult to crack. But Precup said she was impressed not just with what the researchers achieved but with how they achieved it.

Dynamic Adaptation and Opponent Exploitation in Computer Poker

AAAI Conferences

As a classic example of imperfect information games, Heads-Up No-limit Texas Holdem (HUNL), has been studied extensively in recent years. While state-of-the-art approaches based on Nash equilibrium have been successful, they lack the ability to model and exploit opponents effectively. This paper presents an evolutionary approach to discover opponent models based Long Short Term Memory neural networks and on Pattern Recognition Trees. Experimental results showed that poker agents built in this method can adapt to opponents they have never seen in training and exploit weak strategies far more effectively than Slumbot 2017, one of the cutting-edge Nash-equilibrium-based poker agents. In addition, agents evolved through playing against relatively weak rule-based opponents tied statistically with Slumbot in heads-up matches. Thus, the proposed approach is a promising new direction for building high-performance adaptive agents in HUNL and other imperfect information games.

Modeling Player Engagement with Bayesian Hierarchical Models

AAAI Conferences

Modeling player engagement is a key challenge in games. However, the gameplay signatures of engaged players can be highly context-sensitive, varying based on where the game is used or what population of players is using it. Traditionally, models of player engagement are investigated in a particular context, and it is unclear how effectively these models generalize to other settings and populations. In this work, we investigate a Bayesian hierarchical linear model for multi-task learning to devise a model of player engagement from a pair of datasets that were gathered in two complementary contexts: a Classroom Study with middle school students and a Laboratory Study with undergraduate students. Both groups of players used similar versions of Crystal Island, an educational interactive narrative game for science learning. Results indicate that the Bayesian hierarchical model outperforms both pooled and context-specific models in cross-validation measures of predicting player motivation from in-game behaviors, particularly for the smaller Classroom Study group. Further, we find that the posterior distributions of model parameters indicate that the coefficient for a measure of gameplay performance significantly differs between groups. Drawing upon their capacity to share information across groups, hierarchical Bayesian methods provide an effective approach for modeling player engagement with data from similar, but different, contexts.

Effects of Communication on the Evolution of Squad Behaviours

AAAI Conferences

As the non-playable characters (NPCs) of squad-based shooter computer games share a common goal, they should work together in teams and display cooperative behaviours that are tactically sound. Our research examines genetic programming (GP) as a technique to automatically develop effective team behaviours for shooter games. GP has been used to evolve teams capable of defeating a single powerful enemy agent in a number of environments without the use of any explicit team communication. The aim of this paper is to explore the effects of communication on the evolution of effective squad behaviours. Thus, NPCs are given the ability to communicate their perceived information during evolution. The results show that communication between team members enables an improvement in average team effectiveness.