We discuss the representation of knowledge and of belief from the viewpoint of decision theory. While the Bayesian approach enjoys general-purpose applicability and axiomatic foundations, it suffers from several drawbacks. In particular, it does not model the belief formation process, and does not relate beliefs to evidence. We survey alternative approaches, and focus on formal model of casebased prediction and case-based decisions. A formal model of belief and knowledge representation needs to address several questions. The most basic ones are: (i) how do we represent knowledge?

Many real-world problems, including inference in Bayes Nets, can be reduced to #SAT, the problem of counting the number of models of a propositional theory. This has motivated the need for efficient #SAT solvers. Currently, such solvers utilize a modified version of DPLL that employs decomposition and caching, techniques that significantly increase the time it takes to process each node in the search space. In addition, the search space is significantly larger than when solving SAT since we must continue searching even after the first solution has been found. It has previously been demonstrated that the size of a DPLL search tree can be significantly reduced by doing more reasoning at each node. However, for SAT the reductions gained are often not worth the extra time required. In this paper we verify the hypothesis that for #SAT this balance changes. In particular, we show that additional reasoning can reduce the size of a #SAT solver's search space, that this reduction cannot always be achieved by the already utilized technique of clause learning, and that this additional reasoning can be cost effective.

This paper reports on the findings of an ongoing project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers which experience abrupt, partial or full failure of component devices. The problem we address is: given a hybrid model of system behavior, a history of executed controller actions, and a history of observations, including an observation of behavior that is aberrant relative to the model of expected behavior, determine what fault occurred to have caused the aberrant behavior. Determining a diagnosis can be cast as a search problem to find the most likely model for the data. Unfortunately, the search space is extremely large. To reduce search space size and to identify an initial set of candidate diagnoses, we propose to exploit techniques originally applied to qualitative diagnosis of continuous systems. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

Dechter, Rina, Mateescu, Robert

The paper introduces mixed networks, a new framework for expressing and reasoning with probabilistic and deterministic information. The framework combines belief networks with constraint networks, defining the semantics and graphical representation. We also introduce the AND/OR search space for graphical models, and develop a new linear space search algorithm. This provides the basis for understanding the benefits of processing the constraint information separately, resulting in the pruning of the search space. When the constraint part is tractable or has a small number of solutions, using the mixed representation can be exponentially more effective than using pure belief networks which odel constraints as conditional probability tables.

Bright, Curtis, Kotsireas, Ilias, Ganesh, Vijay

Over the last few decades, many distinct lines of research aimed at automating mathematics have been developed, including computer algebra systems (CASs) for mathematical modelling, automated theorem provers for first-order logic, SAT/SMT solvers aimed at program verification, and higher-order proof assistants for checking mathematical proofs. More recently, some of these lines of research have started to converge in complementary ways. One success story is the combination of SAT solvers and CASs (SAT+CAS) aimed at resolving mathematical conjectures. Many conjectures in pure and applied mathematics are not amenable to traditional proof methods. Instead, they are best addressed via computational methods that involve very large combinatorial search spaces. SAT solvers are powerful methods to search through such large combinatorial spaces---consequently, many problems from a variety of mathematical domains have been reduced to SAT in an attempt to resolve them. However, solvers traditionally lack deep repositories of mathematical domain knowledge that can be crucial to pruning such large search spaces. By contrast, CASs are deep repositories of mathematical knowledge but lack efficient general search capabilities. By combining the search power of SAT with the deep mathematical knowledge in CASs we can solve many problems in mathematics that no other known methods seem capable of solving. We demonstrate the success of the SAT+CAS paradigm by highlighting many conjectures that have been disproven, verified, or partially verified using our tool MathCheck. These successes indicate that the paradigm is positioned to become a standard method for solving problems requiring both a significant amount of search and deep mathematical reasoning. For example, the SAT+CAS paradigm has recently been used by Heule, Kauers, and Seidl to find many new algorithms for $3\times3$ matrix multiplication.