Goto

Collaborating Authors

Results


Variational Bayes In Private Settings (VIPS)

Journal of Artificial Intelligence Research

Many applications of Bayesian data analysis involve sensitive information such as personal documents or medical records, motivating methods which ensure that privacy is protected. We introduce a general privacy-preserving framework for Variational Bayes (VB), a widely used optimization-based Bayesian inference method. Our framework respects differential privacy, the gold-standard privacy criterion, and encompasses a large class of probabilistic models, called the Conjugate Exponential (CE) family. We observe that we can straightforwardly privatise VB's approximate posterior distributions for models in the CE family, by perturbing the expected sufficient statistics of the complete-data likelihood. For a broadly-used class of non-CE models, those with binomial likelihoods, we show how to bring such models into the CE family, such that inferences in the modified model resemble the private variational Bayes algorithm as closely as possible, using the Pólya-Gamma data augmentation scheme. The iterative nature of variational Bayes presents a further challenge since iterations increase the amount of noise needed. We overcome this by combining: (1) an improved composition method for differential privacy, called the moments accountant, which provides a tight bound on the privacy cost of multiple VB iterations and thus significantly decreases the amount of additive noise; and (2) the privacy amplification effect of subsampling mini-batches from large-scale data in stochastic learning. We empirically demonstrate the effectiveness of our method in CE and non-CE models including latent Dirichlet allocation, Bayesian logistic regression, and sigmoid belief networks, evaluated on real-world datasets.


Predicting Strategic Behavior from Free Text

Journal of Artificial Intelligence Research

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: Can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices--the representation of the text with the commonsensical personality attributes and our classifier--to the predictive power of our model.


A Comprehensive Survey on Traffic Prediction

arXiv.org Artificial Intelligence

Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic prediction can assist route planing, guide vehicle dispatching, and mitigate traffic congestion. This problem is challenging due to the complicated and dynamic spatio-temporal dependencies between different regions in the road network. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing traffic prediction abilities. The purpose of this paper is to provide a comprehensive survey for traffic prediction. Specifically, we first summarize the existing traffic prediction methods, and give a taxonomy of them. Second, we list the common applications of traffic prediction and the state-of-the-art in these applications. Third, we collect and organize widely used public datasets in the existing literature. Furthermore, we give an evaluation by conducting extensive experiments to compare the performance of methods related to traffic demand and speed prediction respectively on two datasets. Finally, we discuss potential future directions.


Sparse Generalized Canonical Correlation Analysis: Distributed Alternating Iteration based Approach

arXiv.org Machine Learning

Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two distinct objects. To overcome this limitation, in this paper, we propose a sparse generalized canonical correlation analysis (GCCA), which could detect the latent relations of multiview data with sparse structures. Moreover, the introduced sparsity could be considered as Laplace prior on the canonical variates. Specifically, we convert the GCCA into a linear system of equations and impose $\ell_1$ minimization penalty for sparsity pursuit. This results in a nonconvex problem on Stiefel manifold, which is difficult to solve. Motivated by Boyd's consensus problem, an algorithm based on distributed alternating iteration approach is developed and theoretical consistency analysis is investigated elaborately under mild conditions. Experiments on several synthetic and real world datasets demonstrate the effectiveness of the proposed algorithm.


Moment-Based Domain Adaptation: Learning Bounds and Algorithms

arXiv.org Machine Learning

This thesis contributes to the mathematical foundation of domain adaptation as emerging field in machine learning. In contrast to classical statistical learning, the framework of domain adaptation takes into account deviations between probability distributions in the training and application setting. Domain adaptation applies for a wider range of applications as future samples often follow a distribution that differs from the ones of the training samples. A decisive point is the generality of the assumptions about the similarity of the distributions. Therefore, in this thesis we study domain adaptation problems under as weak similarity assumptions as can be modelled by finitely many moments.


Minimizing FLOPs to Learn Efficient Sparse Representations

arXiv.org Machine Learning

Deep representation learning has become one of the most widely adopted approaches for visual search, recommendation, and identification. Retrieval of such representations from a large database is however computationally challenging. Approximate methods based on learning compact representations, have been widely explored for this problem, such as locality sensitive hashing, product quantization, and PCA. In this work, in contrast to learning compact representations, we propose to learn high dimensional and sparse representations that have similar representational capacity as dense embeddings while being more efficient due to sparse matrix multiplication operations which can be much faster than dense multiplication. Following the key insight that the number of operations decreases quadratically with the sparsity of embeddings provided the nonzero entries are distributed uniformly across dimensions, we propose a novel approach to learn such distributed sparse embeddings via the use of a carefully constructed regularization function that directly minimizes a continuous relaxation of the number of floating-point operations (FLOPs) incurred during retrieval. Our experiments show that our approach is competitive to the other baselines and yields a similar or better speed-vs-accuracy tradeoff on practical datasets 1 .


Visual Spoofing in content based spam detection

arXiv.org Machine Learning

"Subject: Please send money Body: I am so distraught. I thought i could reach out to you to help me out. I came down to United Kingdom for a short vacation unfortunately i was mugged at the park of the hotel i stayed, all cash, credit card and cell phone was stolen from me but luckily for me i still have my passport with me. I've been to the embassy and to the police here but they're not helping issues at all and, my flight leaves in few hours time from now but. I am having problems settling the hotel bills and the hotel manager won't let me leave until i settle my hotel bills. I'm freaked out at the moment." As expected, this email, which definitely seems to be spam, ends up in the junk email folder. However, in this paper we show that visual spoofing achieved by substituting some confusables (characters that look similar) into the above email text will enable the same email to bypass the spam filter. We also propose ways to address this loophole.


Predicting Strategic Behavior from Free Text

arXiv.org Artificial Intelligence

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices -- the representation of the text with the commonsensical personality attributes and our classifier -- to the predictive power of our model.


A Spatio-Temporal Spot-Forecasting Framework for Urban Traffic Prediction

arXiv.org Machine Learning

Spatio-temporal forecasting is an open research field whose interest is growing exponentially. In this work we focus on creating a complex deep neural framework for spatio-temporal traffic forecasting with comparatively very good performance and that shows to be adaptable over several spatio-temporal conditions while remaining easy to understand and interpret. Our proposal is based on an interpretable attention-based neural network in which several modules are combined in order to capture key spatio-temporal time series components. Through extensive experimentation, we show how the results of our approach are stable and better than those of other state-of-the-art alternatives.


Autonomous discovery in the chemical sciences part I: Progress

arXiv.org Artificial Intelligence

This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this first part, we describe a classification for discoveries of physical matter (molecules, materials, devices), processes, and models and how they are unified as search problems. We then introduce a set of questions and considerations relevant to assessing the extent of autonomy. Finally, we describe many case studies of discoveries accelerated by or resulting from computer assistance and automation from the domains of synthetic chemistry, drug discovery, inorganic chemistry, and materials science. These illustrate how rapid advancements in hardware automation and machine learning continue to transform the nature of experimentation and modelling. Part two reflects on these case studies and identifies a set of open challenges for the field.