Collaborating Authors


Foundations of Explainable Knowledge-Enabled Systems Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.

Explainability in Human-Agent Systems Artificial Intelligence

This paper presents a taxonomy of explainability in Human-Agent Systems. We consider fundamental questions about the Why, Who, What, When and How of explainability. First, we define explainability, and its relationship to the related terms of interpretability, transparency, explicitness, and faithfulness. These definitions allow us to answer why explainability is needed in the system, whom it is geared to and what explanations can be generated to meet this need. We then consider when the user should be presented with this information. Last, we consider how objective and subjective measures can be used to evaluate the entire system. This last question is the most encompassing as it will need to evaluate all other issues regarding explainability.

Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.

Non-monotonic Reasoning in Deductive Argumentation Artificial Intelligence

Argumentation is a non-monotonic process. This reflects the fact that argumentation involves uncertain information, and so new information can cause a change in the conclusions drawn. However, the base logic does not need to be non-monotonic. Indeed, most proposals for structured argumentation use a monotonic base logic (e.g. some form of modus ponens with a rule-based language, or classical logic). Nonetheless, there are issues in capturing defeasible reasoning in argumentation including choice of base logic and modelling of defeasible knowledge. And there are insights and tools to be harnessed for research in non-monontonic logics. We consider some of these issues in this paper.