Goto

Collaborating Authors

Results


Hackathon machine learning and data science competitions platforms AnalyticsJobs

#artificialintelligence

After consuming hundreds of books, several notes about Data Science and have viewed several videos of Data Scientists sharing their experience. You have all the theoretical knowledge you need to know for becoming a Data Scientists. But are you a Data Scientist now? The next big step is to start applying the concept, think differently and how you can do that is either find real-world problems of fields in which you are interested in or you can take participate in Hackathons and Machine learning Competitions. Hackathons are efficient and new means of hiring professionals in aspects of machine learning, Artificial Intelligence and data science.


Predicting Strategic Behavior from Free Text

Journal of Artificial Intelligence Research

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: Can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices--the representation of the text with the commonsensical personality attributes and our classifier--to the predictive power of our model.


Predicting Strategic Behavior from Free Text

arXiv.org Artificial Intelligence

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices -- the representation of the text with the commonsensical personality attributes and our classifier -- to the predictive power of our model.


Data Science Masters Program iCert Global

#artificialintelligence

Data Scientist is the most promising job in the U.S according to LinkedIn. Also, the demand for Data Scientists is growing exponentially in all the industries. Out of all the openings, 19% of data science professionals jobs are secured by the Finance Industry. Python statistics is one of the most important python built-in libraries developed for descriptive statistics. Python statistics is all about the ability to describe, summarize, and represent data visually through comprehensive python statistics libraries.


A Survey on Edge Intelligence

arXiv.org Artificial Intelligence

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.


A Human-Centered Review of the Algorithms used within the U.S. Child Welfare System

arXiv.org Artificial Intelligence

The U.S. Child Welfare System (CWS) is charged with improving outcomes for foster youth; yet, they are overburdened and underfunded. To overcome this limitation, several states have turned towards algorithmic decision-making systems to reduce costs and determine better processes for improving CWS outcomes. Using a human-centered algorithmic design approach, we synthesize 50 peer-reviewed publications on computational systems used in CWS to assess how they were being developed, common characteristics of predictors used, as well as the target outcomes. We found that most of the literature has focused on risk assessment models but does not consider theoretical approaches (e.g., child-foster parent matching) nor the perspectives of caseworkers (e.g., case notes). Therefore, future algorithms should strive to be context-aware and theoretically robust by incorporating salient factors identified by past research. We provide the HCI community with research avenues for developing human-centered algorithms that redirect attention towards more equitable outcomes for CWS.


50 Best Python Tutorial Online To Learn Python Fast 2019 JA Directives

#artificialintelligence

Are you looking for the Best Python Tutorial Online To Learn Python Fast? The best way to learn python is with the list of the Best Python Courses online, books, Training, and Certification Program, which will help you to become an expert in Python programming language and Python programmer. The largest curated list for everything you need to know about Python. Don't be afraid, you will be happy to know that if you have a little idea about programming experience than it's easy for beginners like you to use and learn Python, so let get started! Also, we have included some bonus python certification book to help you to become a Python certified programmer. Learning Python from different sources are now available and installing Python is easy. Many Linux and UNIX distributions include a recent Python. Also, many Windows computers now come with Python already installed. If you don't know how to install Python you can find a few notes on the BeginnersGuide /Download on the wiki page.


Detecting and Characterizing Bots that Commit Code

arXiv.org Machine Learning

Background: Some developer activity traditionally performed manually, such as making code commits, opening, managing, or closing issues is increasingly subject to automation in many OSS projects. Specifically, such activity is often performed by tools that react to events or run at specific times. We refer to such automation tools as bots and, in many software mining scenarios related to developer productivity or code quality it is desirable to identify bots in order to separate their actions from actions of individuals. Aim: Find an automated way of identifying bots and code committed by these bots, and to characterize the types of bots based on their activity patterns. Method and Result: We propose BIMAN, a systematic approach to detect bots using author names, commit messages, files modified by the commit, and projects associated with the ommits. For our test data, the value for AUC-ROC was 0.9. We also characterized these bots based on the time patterns of their code commits and the types of files modified, and found that they primarily work with documentation files and web pages, and these files are most prevalent in HTML and JavaScript ecosystems. We have compiled a shareable dataset containing detailed information about 461 bots we found (all of whom have more than 1000 commits) and 14,678,222 commits they created.


From Data to Actions in Intelligent Transportation Systems: a Prescription of Functional Requirements for Model Actionability

arXiv.org Artificial Intelligence

Advances in Data Science are lately permeating every field of Transportation Science and Engineering, making it straightforward to imagine that developments in the transportation sector will be data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a "story" intensively producing and consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers' personal devices act as sources of data flows that are eventually fed to software running on automatic devices, actuators or control systems producing, in turn, complex information flows between users, traffic managers, data analysts, traffic modeling scientists, etc. These information flows provide enormous opportunities to improve model development and decision-making. The present work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in other words, for data-based models to fully become actionable. Grounded on this described data modeling pipeline for ITS, we define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We deliberately generalize model learning to be adaptive, since, in the core of our paper is the firm conviction that most learners will have to adapt to the everchanging phenomenon scenario underlying the majority of ITS applications. Finally, we provide a prospect of current research lines within the Data Science realm that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.


An Approach for Time-aware Domain-based Social Influence Prediction

arXiv.org Artificial Intelligence

Online Social Networks(OSNs) have established virtual platforms enabling people to express their opinions, interests and thoughts in a variety of contexts and domains, allowing legitimate users as well as spammers and other untrustworthy users to publish and spread their content. Hence, the concept of social trust has attracted the attention of information processors/data scientists and information consumers/business firms. One of the main reasons for acquiring the value of Social Big Data (SBD) is to provide frameworks and methodologies using which the credibility of OSNs users can be evaluated. These approaches should be scalable to accommodate large-scale social data. Hence, there is a need for well comprehending of social trust to improve and expand the analysis process and inferring the credibility of SBD. Given the exposed environment's settings and fewer limitations related to OSNs, the medium allows legitimate and genuine users as well as spammers and other low trustworthy users to publish and spread their content. Hence, this paper presents an approach incorporates semantic analysis and machine learning modules to measure and predict users' trustworthiness in numerous domains in different time periods. The evaluation of the conducted experiment validates the applicability of the incorporated machine learning techniques to predict highly trustworthy domain-based users.