Goto

Collaborating Authors

Results


Blender Bot -- Part 3: The Many Architectures

#artificialintelligence

We have been looking into Facebook's open-sourced conversational offering, Blender Bot. In Part-1 we went over in detail about the DataSets used in the pre-training and fine-tuning of it and the failure cases as well as limitations of Blender. And in Part-2 we studied the more generic problem setting of "Multi-Sentence Scoring", the Transformer architectures used for such a task and learnt about the Poly-Encoders in particular -- which will be used to provide the encoder representations in Blender. In this 3rd and final part, we return from our respite with Poly-Encoders, back to Blender. We shall go over the different Model Architectures, their respective training objectives, the Evaluation methods and performance of Blender in comparison to Meena.


Top YouTube playlist for Data Science and AI that you must check

#artificialintelligence

The word "deep" in "deep learning" refers to the number of layers through which the data is transformed. Deep models are able to extract better features than shallow models and hence, extra layers help in learning the features effectively.


Predicting Strategic Behavior from Free Text

Journal of Artificial Intelligence Research

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: Can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices--the representation of the text with the commonsensical personality attributes and our classifier--to the predictive power of our model.


Multimodal Categorization of Crisis Events in Social Media

arXiv.org Artificial Intelligence

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.


Interactions in information spread: quantification and interpretation using stochastic block models

arXiv.org Machine Learning

In most real-world applications, it is seldom the case that a given observable evolves independently of its environment. In social networks, users' behavior results from the people they interact with, news in their feed, or trending topics. In natural language, the meaning of phrases emerges from the combination of words. In general medicine, a diagnosis is established on the basis of the interaction of symptoms. Here, we propose a new model, the Interactive Mixed Membership Stochastic Block Model (IMMSBM), which investigates the role of interactions between entities (hashtags, words, memes, etc.) and quantifies their importance within the aforementioned corpora. We find that interactions play an important role in those corpora. In inference tasks, taking them into account leads to average relative changes with respect to non-interactive models of up to 150\% in the probability of an outcome. Furthermore, their role greatly improves the predictive power of the model. Our findings suggest that neglecting interactions when modeling real-world phenomena might lead to incorrect conclusions being drawn.


Predicting Strategic Behavior from Free Text

arXiv.org Artificial Intelligence

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices -- the representation of the text with the commonsensical personality attributes and our classifier -- to the predictive power of our model.



A Survey on Edge Intelligence

arXiv.org Artificial Intelligence

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.


Bag of biterms modeling for short texts

arXiv.org Machine Learning

Analyzing texts from social media encounters many challenges due to their unique characteristics of shortness, massiveness, and dynamic. Short texts do not provide enough context information, causing the failure of the traditional statistical models. Furthermore, many applications often face with massive and dynamic short texts, causing various computational challenges to the current batch learning algorithms. This paper presents a novel framework, namely Bag of Biterms Modeling (BBM), for modeling massive, dynamic, and short text collections. BBM comprises of two main ingredients: (1) the concept of Bag of Biterms (BoB) for representing documents, and (2) a simple way to help statistical models to include BoB. Our framework can be easily deployed for a large class of probabilistic models, and we demonstrate its usefulness with two well-known models: Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP). By exploiting both terms (words) and biterms (pairs of words), the major advantages of BBM are: (1) it enhances the length of the documents and makes the context more coherent by emphasizing the word connotation and co-occurrence via Bag of Biterms, (2) it inherits inference and learning algorithms from the primitive to make it straightforward to design online and streaming algorithms for short texts. Extensive experiments suggest that BBM outperforms several state-of-the-art models. We also point out that the BoB representation performs better than the traditional representations (e.g, Bag of Words, tf-idf) even for normal texts.


Mapping the Landscape of Artificial Intelligence Applications against COVID-19

arXiv.org Artificial Intelligence

COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, with over 294,000 cases as of March 22, 2020 (WHO, 2020). In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis at different scales including molecular, medical and epidemiological applications. We finish with a discussion of promising future directions of research and the tools and resources needed to facilitate AI research. Executive Summary - There is a broad range of potential applications of AI covering medical and societal challenges created by the COVID-19 pandemic; however, few of them are currently mature enough to show operational impact.