Goto

Collaborating Authors

Results


Ethical AI and the importance of guidelines for algorithms -- explained

#artificialintelligence

In October, Amazon had to discontinue an artificial intelligence–powered recruiting tool after it discovered the system was biased against female applicants. In 2016, a ProPublica investigation revealed a recidivism assessment tool that used machine learning was biased against black defendants. More recently, the US Department of Housing and Urban Development sued Facebook because its ad-serving algorithms enabled advertisers to discriminate based on characteristics like gender and race. And Google refrained from renewing its AI contract with the Department of Defense after employees raised ethical concerns. Those are just a few of the many ethical controversies surrounding artificial intelligence algorithms in the past few years.



Ethical AI and the importance of guidelines for algorithms -- explained – Ranzware Tech NEWS

#artificialintelligence

In October, Amazon had to discontinue an artificial intelligence–powered recruiting tool after it discovered the system was biased against female applicants. In 2016, a ProPublica investigation revealed a recidivism assessment tool that used machine learning was biased against black defendants. More recently, the US Department of Housing and Urban Development sued Facebook because its ad-serving algorithms enabled advertisers to discriminate based on characteristics like gender and race. And Google refrained from renewing its AI contract with the Department of Defense after employees raised ethical concerns. Those are just a few of the many ethical controversies surrounding artificial intelligence algorithms in the past few years.


Vocabulary Alignment in Openly Specified Interactions

Journal of Artificial Intelligence Research

The problem of achieving common understanding between agents that use different vocabularies has been mainly addressed by techniques that assume the existence of shared external elements, such as a meta-language or a physical environment. In this article, we consider agents that use different vocabularies and only share knowledge of how to perform a task, given by the specification of an interaction protocol. We present a framework that lets agents learn a vocabulary alignment from the experience of interacting. Unlike previous work in this direction, we use open protocols that constrain possible actions instead of defining procedures, making our approach more general. We present two techniques that can be used either to learn an alignment from scratch or to repair an existent one, and we evaluate their performance experimentally.


Chronnet: a network-based model for spatiotemporal data analysis

arXiv.org Machine Learning

The amount and size of spatiotemporal data sets from different domains have been rapidly increasing in the last years, which demands the development of robust and fast methods to analyze and extract information from them. In this paper, we propose a network-based model for spatiotemporal data analysis called chronnet. It consists of dividing a geometrical space into grid cells represented by nodes connected chronologically. The main goal of this model is to represent consecutive recurrent events between cells with strong links in the network. This representation permits the use of network science and graphing mining tools to extract information from spatiotemporal data. The chronnet construction process is fast, which makes it suitable for large data sets. In this paper, we describe how to use our model considering artificial and real data. For this purpose, we propose an artificial spatiotemporal data set generator to show how chronnets capture not just simple statistics, but also frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Additionally, we analyze a real-world data set composed of global fire detections, in which we describe the frequency of fire events, outlier fire detections, and the seasonal activity, using a single chronnet.


A Robust Reputation-based Group Ranking System and its Resistance to Bribery

arXiv.org Artificial Intelligence

The spread of online reviews and opinions and its growing influence on people's behavior and decisions, boosted the interest to extract meaningful information from this data deluge. Hence, crowdsourced ratings of products and services gained a critical role in business and governments. Current state-of-the-art solutions rank the items with an average of the ratings expressed for an item, with a consequent lack of personalization for the users, and the exposure to attacks and spamming/spurious users. Using these ratings to group users with similar preferences might be useful to present users with items that reflect their preferences and overcome those vulnerabilities. In this paper, we propose a new reputation-based ranking system, utilizing multipartite rating subnetworks, which clusters users by their similarities using three measures, two of them based on Kolmogorov complexity. We also study its resistance to bribery and how to design optimal bribing strategies. Our system is novel in that it reflects the diversity of preferences by (possibly) assigning distinct rankings to the same item, for different groups of users. We prove the convergence and efficiency of the system. By testing it on synthetic and real data, we see that it copes better with spamming/spurious users, being more robust to attacks than state-of-the-art approaches. Also, by clustering users, the effect of bribery in the proposed multipartite ranking system is dimmed, comparing to the bipartite case.


Edgeworth expansions for network moments

arXiv.org Machine Learning

Network method of moments arXiv:1202.5101 is an important tool for nonparametric network inferences. However, there has been little investigation on accurate descriptions of the sampling distributions of network moment statistics. In this paper, we present the first higher-order accurate approximation to the sampling CDF of a studentized network moment by Edgeworth expansion. In sharp contrast to classical literature on noiseless U-statistics, we showed that the Edgeworth expansion of a network moment statistic as a noisy U-statistic can achieve higher-order accuracy without non-lattice or smoothness assumptions but just requiring weak regularity conditions. Behind this result is our surprising discovery that the two typically-hated factors in network analysis, namely, sparsity and edge-wise observational errors, jointly play a blessing role, contributing a crucial self-smoothing effect in the network moment statistic and making it analytically tractable. Our assumptions match the minimum requirements in related literature. For practitioners, our empirical Edgeworth expansion is highly accurate and computationally efficient. It is also easy to implement. These were demonstrated by comprehensive simulation studies. We showcase three applications of our results in network inference. We proved, to our knowledge, for the first time that some network bootstraps enjoy higher-order accuracy, and provided theoretical guidance for tuning network sub-sampling. We also derived a one-sample test and Cornish-Fisher confidence interval for any given moment, both with analytical formulation and explicit error rates.


Generating Fact Checking Explanations

arXiv.org Artificial Intelligence

Most existing work on automated fact checking is concerned with predicting the veracity of claims based on metadata, social network spread, language used in claims, and, more recently, evidence supporting or denying claims. A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process -- generating justifications for verdicts on claims. This paper provides the first study of how these explanations can be generated automatically based on available claim context, and how this task can be modelled jointly with veracity prediction. Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system. The results of a manual evaluation further suggest that the informativeness, coverage and overall quality of the generated explanations are also improved in the multi-task model.


Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization

arXiv.org Machine Learning

Pairwise comparison data arise in many domains with subjective assessment experiments, for example in image and video quality assessment. In these experiments observers are asked to express a preference between two conditions. However, many pairwise comparison protocols require a large number of comparisons to infer accurate scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that chooses only the most informative pairs for comparison. In this paper we propose ASAP, an active sampling algorithm based on approximate message passing and expected information gain maximization. Unlike most existing methods, which rely on partial updates of the posterior distribution, we are able to perform full updates and therefore much improve the accuracy of the inferred scores. The algorithm relies on three techniques for reducing computational cost: inference based on approximate message passing, selective evaluations of the information gain, and selecting pairs in a batch that forms a minimum spanning tree of the inverse of information gain. We demonstrate, with real and synthetic data, that ASAP offers the highest accuracy of inferred scores compared to the existing methods. We also provide an open-source GPU implementation of ASAP for large-scale experiments.


Machine Learning Based Solutions for Security of Internet of Things (IoT): A Survey

arXiv.org Machine Learning

Over the last decade, IoT platforms have been developed into a global giant that grabs every aspect of our daily lives by advancing human life with its unaccountable smart services. Because of easy accessibility and fast-growing demand for smart devices and network, IoT is now facing more security challenges than ever before. There are existing security measures that can be applied to protect IoT. However, traditional techniques are not as efficient with the advancement booms as well as different attack types and their severeness. Thus, a strong-dynamically enhanced and up to date security system is required for next-generation IoT system. A huge technological advancement has been noticed in Machine Learning (ML) which has opened many possible research windows to address ongoing and future challenges in IoT. In order to detect attacks and identify abnormal behaviors of smart devices and networks, ML is being utilized as a powerful technology to fulfill this purpose. In this survey paper, the architecture of IoT is discussed, following a comprehensive literature review on ML approaches the importance of security of IoT in terms of different types of possible attacks. Moreover, ML-based potential solutions for IoT security has been presented and future challenges are discussed.