Goto

Collaborating Authors

Machine Learning


A brain-inspired architecture for human gesture recognition

#artificialintelligence

Researchers at Nanyang Technological University and University of Technology Sydney have recently developed a machine learning architecture that can recognize human gestures by analyzing images captured by stretchable strain sensors. The new architecture, presented in a paper published in Nature Electronics, is inspired by the functioning of the human brain. "Our idea originates from how the human brain processes information," Xiaodong Chen, one of the researchers who carried out the study, told TechXplore. "In the human brain, high perceptual activities, such as thinking, planning and inspiration, do not only depend on specific sensory information, but are derived from a comprehensive integration of multi-sensory information from diverse sensors. This inspired us to combine visual information and somatosensory information to implement high-precision gesture recognition."


The path to real-world artificial intelligence

#artificialintelligence

Artificial intelligence has made significant strides in recent years, but modern AI techniques remain limited, a panel of MIT professors and the director of the MIT-IBM Watson AI Lab said during a webinar this week. Neural networks can perform specific, well-defined tasks but they struggle in real-world situations that go beyond pattern recognition and present obstacles like limited data, reliance on self-training, and answering questions like "why" and "how" versus "what," the panel said. The future of AI depends on enabling AI systems to do something once considered impossible: Learn by demonstrating flexibility, some semblance of reasoning, and/or by transferring knowledge from one set of tasks to another, the group said. The panel discussion was moderated by David Schubmehl, a research director at IDC, and it began with a question he posed asking about the current limitations of AI and machine learning. "The striking success right now in particular, in machine learning, is in problems that require interpretation of signals--images, speech and language," said panelist Leslie Kaelbling, a computer science and engineering professor at MIT.


Jim McGowan, head of product at ElectrifAi – Interview Series

#artificialintelligence

Jim McGowan, is the head of product at ElectrifAi, they specialize in extracting massive amounts of disparate data, transforming chaotic structured and unstructured data into actionable business insights. What is it that attracted you to the world of machine learning and AI? I first encountered Machine Learning while earning a doctorate for work in cognitive science. AI systems largely consisted of distilling an expert's experience down to a flow chart. This seemed intuitively to work, but the systems quickly grew too complex and weren't living up to their promise.


Machine Learning For Beginners Part 3

#artificialintelligence

This is a supervised learning sub categories. Regression is the process of predicting the value of discrete'yes / no' label, as long as it falls on a continuous spectrum of the input value. In the output variable regression problem is real value as the dollar, weights etc regression algorithm to answer questions such as "How much?" "How many?".


Gaussian Process Regression on Molecules in GPflow

#artificialintelligence

This post demonstrates how to train a Gaussian Process (GP) to predict molecular properties using the GPflow library by creating a custom-defined Tanimoto kernel to operate on Morgan fingerprints. In this example, we'll be trying to predict the experimentally-determined electronic transition wavelengths of molecular photoswitches, a class of molecule that undergoes a reversible transformation between its E and Z isomers upon irradiation by light. We'll start by importing all of the machine learning and chemistry libraries we're going to use. For our molecular representation, we're going to be working with the widely-used Morgan fingerprints. Under this representation, molecules are represented as bit vectors.


2020 No-Code AI & Machine Learning Using IBM Watson AutoAI

#artificialintelligence

In this course I am going to introduce you to Watson Studio AutoAI by IBM. Artificial Intelligence (AI) and Machine Learning (ML) are two very hot topics nowadays. Experts claim that AI & ML are going to revolutionize the world. This course is designed for those who want to take a short cut to these technologies. Auto AI and Auto ML are new tools that provide methods and processes to make Artificial intelligence and Machine Learning available for non-experts.


This Machine Learning-Focused VC Firm Just Added A Third Woman Investment Partner

#artificialintelligence

Basis Set Ventures investment partners Chang Xu, Lan Xuezhao and Sheila Vashee are looking to run a ... [ ] different kind of venture capital firm. Basis Set Ventures doesn't want to be your typical venture capital firm. First, there's the fledgling VC firm's focus on a technical area that has seen some disillusionment in recent years: machine learning and artificial intelligence. Sure, AI has become something out of startup bingo, tacked on in pitches and often stretched behind meaning. Basis Set founder Lan Xuezhao is confident she and her team can figure out what's real and what's not.


All You Need to Know to get started with NumPy

#artificialintelligence

Everything you need to know to get started with NumPy. The world runs on data and everyone should know how to work with it. It's hard to imagine a modern, tech-literate business that doesn't use data analysis, data science, machine learning, or artificial intelligence in some form. NumPy is at the core of all of those fields. While it's impossible to know exactly how many people are learning to analyze and work with data, it's a pretty safe assumption that tens of thousands (if not millions) of people need to understand NumPy and how to use it. Because of that, I've spent the last three months putting together what I hope is the best introductory guide to NumPy yet! If there's anything you want to see included in this tutorial, please leave a note in the comments or reach out any time! NumPy (Numerical Python) is an open-source Python library that's used in almost every field of science and engineering. NumPy users include everyone from beginning coders to experienced researchers doing state-of-the-art scientific and industrial research and development. The NumPy API is used extensively in Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other data science and scientific Python packages.


A GUI to Recognize Handwritten Digits -- in 19 Lines of Python

#artificialintelligence

Have you ever trained a machine learning model that you've wanted to share with the world? Maybe set up a simple website where you (and your users) could try putting in their own inputs and seeing the models' predictions? It's easier than you might think! In this tutorial, I'm going to show you how to train a machine learning model to recognize digits using the Tensorflow library, and then create a web-based GUI to show predictions from that model. You (or your users) will be able to draw arbitrary digits into a browser, and see real-time predictions, just like below.


Deep Learning for Business Managers: Neural Networks in R

#artificialintelligence

You're looking for a complete Artificial Neural Network (ANN) course that teaches you everything you need to create a Neural Network model in R, right? You've found the right Neural Networks course! Identify the business problem which can be solved using Neural network Models. Have a clear understanding of Advanced Neural network concepts such as Gradient Descent, forward and Backward Propagation etc. Create Neural network models in R using Keras and Tensorflow libraries and analyze their results. How this course will help you?