Goto

Collaborating Authors

Results


Anomaly Detection in Trajectory Data with Normalizing Flows

arXiv.org Machine Learning

The task of detecting anomalous data patterns is as important in practical applications as challenging. In the context of spatial data, recognition of unexpected trajectories brings additional difficulties, such as high dimensionality and varying pattern lengths. We aim to tackle such a problem from a probability density estimation point of view, since it provides an unsupervised procedure to identify out of distribution samples. More specifically, we pursue an approach based on normalizing flows, a recent framework that enables complex density estimation from data with neural networks. Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory. Then, we aggregate the segments' likelihoods into a single coherent trajectory anomaly score. Such a strategy enables handling possibly large sequences with different lengths. We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques. The promising results obtained in the performed computational experiments indicate the feasibility of the GRADINGS, specially the variant that considers autoregressive normalizing flows.


Anomaly Detection with Density Estimation

arXiv.org Machine Learning

We leverage recent breakthroughs in neural density estimation to propose a new unsupervised anomaly detection technique (ANODE). By estimating the probability density of the data in a signal region and in sidebands, and interpolating the latter into the signal region, a likelihood ratio of data vs. background can be constructed. This likelihood ratio is broadly sensitive to overdensities in the data that could be due to localized anomalies. In addition, a unique potential benefit of the ANODE method is that the background can be directly estimated using the learned densities. Finally, ANODE is robust against systematic differences between signal region and sidebands, giving it broader applicability than other methods. We demonstrate the power of this new approach using the LHC Olympics 2020 R\&D Dataset. We show how ANODE can enhance the significance of a dijet bump hunt by up to a factor of 7 with a 10\% accuracy on the background prediction. While the LHC is used as the recurring example, the methods developed here have a much broader applicability to anomaly detection in physics and beyond.


An Attribute Oriented Induction based Methodology for Data Driven Predictive Maintenance

arXiv.org Machine Learning

Attribute Oriented Induction (AOI) is a data mining algorithm used for extracting knowledge of relational data, taking into account expert knowledge. It is a clustering algorithm that works by transforming the values of the attributes and converting an instance into others that are more generic or ambiguous. In this way, it seeks similarities between elements to generate data groupings. AOI was initially conceived as an algorithm for knowledge discovery in databases, but over the years it has been applied to other areas such as spatial patterns, intrusion detection or strategy making. In this paper, AOI has been extended to the field of Predictive Maintenance. The objective is to demonstrate that combining expert knowledge and data collected from the machine can provide good results in the Predictive Maintenance of industrial assets. To this end we adapted the algorithm and used an LSTM approach to perform both the Anomaly Detection (AD) and the Remaining Useful Life (RUL). The results obtained confirm the validity of the proposal, as the methodology was able to detect anomalies, and calculate the RUL until breakage with considerable degree of accuracy.


Thoughtfully Using Artificial Intelligence in Earth Science - Eos

#artificialintelligence

Deriving scientific insights from artificial intelligence methods requires adhering to best practices and moving beyond off-the-shelf approaches. Artificial intelligence (AI) methods have emerged as useful tools in many Earth science domains (e.g., climate models, weather prediction, hydrology, space weather, and solid Earth). AI methods are being used for tasks of prediction, anomaly detection, event classification, and onboard decision-making on satellites, and they could potentially provide high-speed alternatives for representing subgrid processes in climate models [Rasp et al., 2018; Brenowitz and Bretherton, 2019]. Although the use of AI methods has spiked dramatically in recent years, we caution that their use in Earth science should be approached with vigilance and accompanied by the development of best practices for their use. Without best practices, inappropriate use of these methods might lead to "bad science," which could create a general backlash in the Earth science community against the use of AI methods.


Visualizing Image Content to Explain Novel Image Discovery

arXiv.org Machine Learning

The initial analysis of any large data set can be divided into two phases: (1) the identification of common trends or patterns and (2) the identification of anomalies or outliers that deviate from those trends. We focus on the goal of detecting observations with novel content, which can alert us to artifacts in the data set or, potentially, the discovery of previously unknown phenomena. To aid in interpreting and diagnosing the novel aspect of these selected observations, we recommend the use of novelty detection methods that generate explanations. In the context of large image data sets, these explanations should highlight what aspect of a given image is new (color, shape, texture, content) in a human-comprehensible form. We propose DEMUD-VIS, the first method for providing visual explanations of novel image content by employing a convolutional neural network (CNN) to extract image features, a method that uses reconstruction error to detect novel content, and an up-convolutional network to convert CNN feature representations back into image space. We demonstrate this approach on diverse images from ImageNet, freshwater streams, and the surface of Mars.


Visual Analytics of Anomalous User Behaviors: A Survey

arXiv.org Machine Learning

The increasing accessibility of data provides substantial opportunities for understanding user behaviors. Unearthing anomalies in user behaviors is of particular importance as it helps signal harmful incidents such as network intrusions, terrorist activities, and financial frauds. Many visual analytics methods have been proposed to help understand user behavior-related data in various application domains. In this work, we survey the state of art in visual analytics of anomalous user behaviors and classify them into four categories including social interaction, travel, network communication, and transaction. We further examine the research works in each category in terms of data types, anomaly detection techniques, and visualization techniques, and interaction methods. Finally, we discuss the findings and potential research directions.


Online Multivariate Anomaly Detection and Localization for High-dimensional Settings

arXiv.org Machine Learning

This paper considers the real-time detection of anomalies in high-dimensional systems. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time, before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure and stealth low-rate cyberattacks. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. We further extend the proposed detection and localization methods to a supervised setup where an additional anomaly dataset is available, and combine the proposed semi-supervised and supervised algorithms to obtain an online learning algorithm under the semi-supervised framework. The practical use of proposed algorithms are demonstrated in DDoS attack mitigation, and their performances are evaluated using a real IoT-botnet dataset and simulations.


Automatic Adaptation to Sensor Replacements

AAAI Conferences

Many software systems run on long-lifespan platforms that operate in diverse and dynamic environments. If these software systems could automatically adapt to hardware changes, it would significantly reduce the maintenance cost and enable rapid upgrade. In this paper, we study the problem of how to automatically adapt to sensor changes, as an important step towards building such long-lived, survivable software systems. We address the adaptation scenarios where a set of sensors are replaced by new sensors. Our approach reconstructs sensor values of replaced sensors by preserving distributions of sensor values before and after the sensor change, thereby not warranting a change in higher-layer software. Compared to existing work, our approach has the following advantages: a) exploiting new sensors without requiring an overlapping period of time between new sensors and old ones; b) providing an estimation of adaptation quality; and c) scaling to a large number of sensors. Experiments on weather data and Unmanned Undersea V ehicle (UUV) data demonstrate that our approach can automatically adapt to sensor changes with higher accuracy compared to baseline methods.


Probabilistic Modeling for Novelty Detection with Applications to Fraud Identification

arXiv.org Machine Learning

Novelty detection is the unsupervised problem of identifying anomalies in test data which significantly differ from the training set. Novelty detection is one of the classic challenges in Machine Learning and a core component of several research areas such as fraud detection, intrusion detection, medical diagnosis, data cleaning, and fault prevention. While numerous algorithms were designed to address this problem, most methods are only suitable to model continuous numerical data. Tackling datasets composed of mixed-type features, such as numerical and categorical data, or temporal datasets describing discrete event sequences is a challenging task. In addition to the supported data types, the key criteria for efficient novelty detection methods are the ability to accurately dissociate novelties from nominal samples, the interpretability, the scalability and the robustness to anomalies located in the training data. In this thesis, we investigate novel ways to tackle these issues. In particular, we propose (i) an experimental comparison of novelty detection methods for mixed-type data (ii) an experimental comparison of novelty detection methods for sequence data, (iii) a probabilistic nonparametric novelty detection method for mixed-type data based on Dirichlet process mixtures and exponential-family distributions and (iv) an autoencoder-based novelty detection model with encoder/decoder modelled as deep Gaussian processes.


Bayesian Anomaly Detection and Classification

arXiv.org Artificial Intelligence

Statistical uncertainties are rarely incorporated in machine learning algorithms, especially for anomaly detection. Here we present the Bayesian Anomaly Detection And Classification (BADAC) formalism, which provides a unified statistical approach to classification and anomaly detection within a hierarchical Bayesian framework. BADAC deals with uncertainties by marginalising over the unknown, true, value of the data. Using simulated data with Gaussian noise, BADAC is shown to be superior to standard algorithms in both classification and anomaly detection performance in the presence of uncertainties, though with significantly increased computational cost. Additionally, BADAC provides well-calibrated classification probabilities, valuable for use in scientific pipelines. We show that BADAC can work in online mode and is fairly robust to model errors, which can be diagnosed through model-selection methods. In addition it can perform unsupervised new class detection and can naturally be extended to search for anomalous subsets of data. BADAC is therefore ideal where computational cost is not a limiting factor and statistical rigour is important. We discuss approximations to speed up BADAC, such as the use of Gaussian processes, and finally introduce a new metric, the Rank-Weighted Score (RWS), that is particularly suited to evaluating the ability of algorithms to detect anomalies.