Goto

Collaborating Authors

Results


Ethical AI and the importance of guidelines for algorithms -- explained

#artificialintelligence

In October, Amazon had to discontinue an artificial intelligence–powered recruiting tool after it discovered the system was biased against female applicants. In 2016, a ProPublica investigation revealed a recidivism assessment tool that used machine learning was biased against black defendants. More recently, the US Department of Housing and Urban Development sued Facebook because its ad-serving algorithms enabled advertisers to discriminate based on characteristics like gender and race. And Google refrained from renewing its AI contract with the Department of Defense after employees raised ethical concerns. Those are just a few of the many ethical controversies surrounding artificial intelligence algorithms in the past few years.


Ethical AI and the importance of guidelines for algorithms -- explained – Ranzware Tech NEWS

#artificialintelligence

In October, Amazon had to discontinue an artificial intelligence–powered recruiting tool after it discovered the system was biased against female applicants. In 2016, a ProPublica investigation revealed a recidivism assessment tool that used machine learning was biased against black defendants. More recently, the US Department of Housing and Urban Development sued Facebook because its ad-serving algorithms enabled advertisers to discriminate based on characteristics like gender and race. And Google refrained from renewing its AI contract with the Department of Defense after employees raised ethical concerns. Those are just a few of the many ethical controversies surrounding artificial intelligence algorithms in the past few years.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


State of AI Report 2019

#artificialintelligence

We believe that AI will be a force multiplier on technological progress in our increasingly digital, data-driven world. This is because everything around us today, ranging from culture to consumer products, is a product of intelligence. In this report, we set out to capture a snapshot of the exponential progress in AI with a focus on developments in the past 12 months. Consider this report as a compilation of the most interesting things we've seen with a goal of triggering an informed conversation about the state of AI and its implication for the future. This edition builds on the inaugural State of AI Report 2018, which can be found here: www.stateof.ai/2018 We consider the following key dimensions in our report: - Research: Technology breakthroughs and their capabilities.



Here are the 7 requirements for building ethical AI, according to the EU commission

#artificialintelligence

In October, Amazon had to discontinue an artificial intelligence–powered recruiting tool after it discovered the system was biased against female applicants. In 2016, a ProPublica investigation revealed a recidivism assessment tool that used machine learning was biased against black defendants. More recently, the US Department of Housing and Urban Development sued Facebook because its ad-serving algorithms enabled advertisers to discriminate based on characteristics like gender and race. And Google refrained from renewing its AI contract with the Department of Defense after employees raised ethical concerns. Those are just a few of the many ethical controversies surrounding artificial intelligence algorithms in the past few years.


AI for the Common Good?! Pitfalls, challenges, and Ethics Pen-Testing

arXiv.org Artificial Intelligence

Recently, many AI researchers and practitioners have embarked on research visions that involve doing AI for "Good". This is part of a general drive towards infusing AI research and practice with ethical thinking. One frequent theme in current ethical guidelines is the requirement that AI be good for all, or: contribute to the Common Good. But what is the Common Good, and is it enough to want to be good? Via four lead questions, I will illustrate challenges and pitfalls when determining, from an AI point of view, what the Common Good is and how it can be enhanced by AI. The questions are: What is the problem / What is a problem?, Who defines the problem?, What is the role of knowledge?, and What are important side effects and dynamics? The illustration will use an example from the domain of "AI for Social Good", more specifically "Data Science for Social Good". Even if the importance of these questions may be known at an abstract level, they do not get asked sufficiently in practice, as shown by an exploratory study of 99 contributions to recent conferences in the field. Turning these challenges and pitfalls into a positive recommendation, as a conclusion I will draw on another characteristic of computer-science thinking and practice to make these impediments visible and attenuate them: "attacks" as a method for improving design. This results in the proposal of ethics pen-testing as a method for helping AI designs to better contribute to the Common Good.