Collaborating Authors


Ontology Translation for Interoperability Among Semantic Web Services

AI Magazine

Research on semantic web services promises greater interoperability among software agents and web services by enabling content-based automated service discovery and interaction and by utilizing . Although this is to be based on use of shared ontologies published on the semantic web, services produced and described by different developers may well use different, perhaps partly overlapping, sets of ontologies. Interoperability will depend on ontology mappings and architectures supporting the associated translation processes. The question we ask is, does the traditional approach of introducing mediator agents to translate messages between requestors and services work in such an open environment? This article reviews some of the processing assumptions that were made in the development of the semantic web service modeling ontology OWL-S and argues that, as a practical matter, the translation function cannot always be isolated in mediators.

BIM4EEB ontologies framework - BIM4EEB


Interoperability in the construction sector is a key issue and researchers, developers and designers have tackled since the introduction of CAD systems. Traditionally, engineers, architects and site operators interact and track their information exchange through paper or digitalized drawings and e-mails. With the introduction of Building Information Modelling (BIM) techniques and tools, operators are using new solutions and methods to keep track and exploit these data. Cover image: ifcOWL ontology (version IFC4ADD2) visualized thanks to WebVOWL, available hereWhat has been described as traditional method corresponds to Level 0 in well-known BIM levels definition. The concept of BIM level 1 represents the criteria needed for the full collaboration for the industry.

Best Practices for Implementing FAIR Vocabularies and Ontologies on the Web Artificial Intelligence

With the adoption of Semantic Web technologies, an increasing number of vocabularies and ontologies have been developed in different domains, ranging from Biology to Agronomy or Geosciences. However, many of these ontologies are still difficult to find, access and understand by researchers due to a lack of documentation, URI resolving issues, versioning problems, etc. In this chapter we describe guidelines and best practices for creating accessible, understandable and reusable ontologies on the Web, using standard practices and pointing to existing tools and frameworks developed by the Semantic Web community. We illustrate our guidelines with concrete examples, in order to help researchers implement these practices in their future vocabularies.

Axiom Pinpointing Artificial Intelligence

Axiom pinpointing refers to the task of finding the specific axioms in an ontology which are responsible for a consequence to follow. This task has been studied, under different names, in many research areas, leading to a reformulation and reinvention of techniques. In this work, we present a general overview to axiom pinpointing, providing the basic notions, different approaches for solving it, and some variations and applications which have been considered in the literature. This should serve as a starting point for researchers interested in related problems, with an ample bibliography for delving deeper into the details.

Foundations of Explainable Knowledge-Enabled Systems Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.

Expressiveness and machine processability of Knowledge Organization Systems (KOS): An analysis of concepts and relations Artificial Intelligence

This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.

Dependently Typed Knowledge Graphs Artificial Intelligence

Reasoning over knowledge graphs is traditionally built upon a hierarchy of languages in the Semantic Web Stack. Starting from the Resource Description Framework (RDF) for knowledge graphs, more advanced constructs have been introduced through various syntax extensions to add reasoning capabilities to knowledge graphs. In this paper, we show how standardized semantic web technologies (RDF and its query language SPARQL) can be reproduced in a unified manner with dependent type theory. In addition to providing the basic functionalities of knowledge graphs, dependent types add expressiveness in encoding both entities and queries, explainability in answers to queries through witnesses, and compositionality and automation in the construction of witnesses. Using the Coq proof assistant, we demonstrate how to build and query dependently typed knowledge graphs as a proof of concept for future works in this direction.

An Ontology-based Context Model in Intelligent Environments Artificial Intelligence

Computing becomes increasingly mobile and pervasive today; these changes imply that applications and services must be aware of and adapt to their changing contexts in highly dynamic environments. Today, building context-aware systems is a complex task due to lack of an appropriate infrastructure support in intelligent environments. A context-aware infrastructure requires an appropriate context model to represent, manipulate and access context information. In this paper, we propose a formal context model based on ontology using OWL to address issues including semantic context representation, context reasoning and knowledge sharing, context classification, context dependency and quality of context. The main benefit of this model is the ability to reason about various contexts. Based on our context model, we also present a Service-Oriented Context-Aware Middleware (SOCAM) architecture for building of context-aware services.

Knowledge Reconciliation of $n$-ary Relations Artificial Intelligence

In the expanding Semantic Web, an increasing number of sources of data and knowledge are accessible by human and software agents. Sources may differ in granularity or completeness, and thus be complementary. Consequently, unlocking the full potential of the available knowledge requires combining them. To this aim, we define the task of knowledge reconciliation, which consists in identifying, within and across sources, equivalent, more specific, or similar units. This task can be challenging since knowledge units are heterogeneously represented in sources (e.g., in terms of vocabularies). In this paper, we propose a rule-based methodology for the reconciliation of $n$-ary relations. To alleviate the heterogeneity in representation, we rely on domain knowledge expressed by ontologies. We tested our method on the biomedical domain of pharmacogenomics by reconciling 50,435 $n$-ary relations from four different real-world sources, which highlighted noteworthy agreements and discrepancies within and across sources.

The SPECIAL-K Personal Data Processing Transparency and Compliance Platform Artificial Intelligence

Primary obligations include obtaining explicit consent from the data subject for the processing of personal data and providing full transparency with respect to processing and sharing. With the coming into effect of the GDPR in May 2018, several tools [11, 16, 19] have recently been developed that can be used to assist companies to assess the compliance of their systems and processes with respect to obligations set forth in the GDPR. However, such tools are targeted at self assessment (i.e. companies complete standard questionnaires in the form of a privacy impact assessment) and cannot be used to automatically check compliance with usage constraints. Such, automated transparency and compliance mechanisms would require not only machine-readable representations of the users consent, but also machine-readable representations of data processing and sharing. SPECIAL 1 is an EU H2020 research and innovation action, which addresses these challenges by demonstrating how Semantic Web technologies can be used for both consent and personal data processing representation and compliance checking. In particular we devise a suite of ontologies and vocabularies that can be used to: (i) model data usage policies, conforming the SPECIAL's Usage Policy Language, (ii) represent data processing and sharing events in a semantic log. Both of which have been developed in close collaboration with legal experts, thus ensuring that our automated compliance checking is tightly coupled with the legal assessment process.1 1 arXiv:2001.09461v1