Goto

Collaborating Authors

Results


Harnessing Cyc to Answer Clinical Researchers' Ad Hoc Queries

AI Magazine

By extending Cyc's ontology and KB approximately 2%, Cycorp and Cleveland Clinic Foundation (CCF) have built a system to answer clinical researchers' ad hoc queries. The query may be long and complex, hence only partially understood at first, parsed into a set of CycL (higher-order logic) fragments with open variables. But, surprisingly often, after applying various constraints (medical domain knowledge, common sense, discourse pragmatics, syntax), there is only one single way to fit those fragments together, one semantically meaningful formal query P. The system, SRA (for Semantic Research Assistant), dispatches a series of database calls and then combines, logically and arithmetically, their results into answers to P. Seeing the first few answers stream back, the user may realize that they need to abort, modify, and re-ask their query. Even before they push ASK, just knowing approximately how many answers would be returned can spark such editing. Besides real-time ad hoc query-answering, queries can be bundled and persist over time.


An AI with 30 Years' Worth of Knowledge Finally Goes to Work

#artificialintelligence

Having spent the past 31 years memorizing an astonishing collection of general knowledge, the artificial-intelligence engine created by Doug Lenat is finally ready to go to work. Lenat's creation is Cyc, a knowledge base of semantic information designed to give computers some understanding of how things work in the real world. Cyc has been given many thousands of facts, including lots of information that you wouldn't find in an encyclopedia because it seems self-evident. It knows, for example, that that Sir Isaac Newton is a famous historical figure who is no longer alive. But more important, Cyc also understands that if you let go of an apple it will fall to the ground; that an apple is not bigger than a person; and that a person cannot throw an apple into space.


Cyc and the Big C: Reading that Produces and Uses Hypotheses about Complex Molecular Biology Mechanisms

AAAI Conferences

Systems biology, the study of the intricate, ramified, com-plex and interacting mechanisms underlying life, often proves too complex for unaided human understanding, even by groups of people working together. This difficulty is ex-acerbated by the high volume of publications in molecular biology. The Big C (‘C’ for Cyc) is a system designed to (semi-)automatically acquire, integrate, and use complex mechanism models, specifically related to cancer biology, via automated reading and a hyper-detailed refinement pro-cess resting on Cyc’s logical representations and powerful inference mechanisms. We aim to assist cancer research and treatment by achieving elements of biologist-level reason-ing, but with the scale and attention to detail that only com-puter implementations can provide.


Harnessing Cyc to Answer Clinical Researchers' Ad Hoc Queries

AI Magazine

By extending Cyc’s ontology and KB approximately 2%, Cycorp and Cleveland Clinic Foundation (CCF) have built a system to answer clinical researchers’ ad hoc queries. The query may be long and complex, hence only partially understood at first, parsed into a set of CycL (higher-order logic) fragments with open variables. But, surprisingly often, after applying various constraints (medical domain knowledge, common sense, discourse pragmatics, syntax), there is only one single way to fit those fragments together, one semantically meaningful formal query P. The system, SRA (for Semantic Research Assistant), dispatches a series of database calls and then combines, logically and arithmetically, their results into answers to P. Seeing the first few answers stream back, the user may realize that they need to abort, modify, and re-ask their query. Even before they push ASK, just knowing approximately how many answers would be returned can spark such editing. Besides real-time ad hoc query-answering, queries can be bundled and persist over time. One bundle of 275 queries is rerun quarterly by CCF to produce the procedures and outcomes data it needs to report to STS (Society of Thoracic Surgeons, an external hospital accreditation and ranking body); another bundle covers ACC (American College of Cardiology) reporting. Until full articulation/answering of precise, analytical queries becomes as straight-forward and ubiquitous as text search, even partial understanding of a query empowers semantic search over semi-structured data (ontology-tagged text), avoiding many of the false positives and false negatives that standard text searching suffers from.


Knowledge Formation and Dialogue Using the KRAKEN Toolset

AAAI Conferences

The KRAKEN toolset is a comprehensive interface for knowledge acquisition that operates in conjunction with the Cyc knowledge base. The KRAKEN system is designed to allow subject-matter experts to make meaningful additions to an existing knowledge base, without the benefit of training in the areas of artificial intelligence, ontology development, or logical representation.


Knowledge Formation and Dialogue Using the KRAKEN Toolset

AAAI Conferences

The KRAKEN toolset is a comprehensive interface for knowledge acquisition that operates in conjunction with the Cyc knowledge base. The KRAKEN system is designed to allow subject-matter experts to make meaningful additions to an existing knowledge base, without the benefit of training in the areas of artificial intelligence, ontology development, or logical representation.