Collaborating Authors


Stacked Generalizations in Imbalanced Fraud Data Sets using Resampling Methods Machine Learning

This study uses stacked generalization, which is a two-step process of combining machine learning methods, called meta or super learners, for improving the performance of algorithms in step one (by minimizing the error rate of each individual algorithm to reduce its bias in the learning set) and then in step two inputting the results into the meta learner with its stacked blended output (demonstrating improved performance with the weakest algorithms learning better). The method is essentially an enhanced cross-validation strategy. Although the process uses great computational resources, the resulting performance metrics on resampled fraud data show that increased system cost can be justified. A fundamental key to fraud data is that it is inherently not systematic and, as of yet, the optimal resampling methodology has not been identified. Building a test harness that accounts for all permutations of algorithm sample set pairs demonstrates that the complex, intrinsic data structures are all thoroughly tested. Using a comparative analysis on fraud data that applies stacked generalizations provides useful insight needed to find the optimal mathematical formula to be used for imbalanced fraud data sets.

A review of machine learning applications in wildfire science and management Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.

Missing Data Imputation for Classification Problems Machine Learning

Imputation of missing data is a common application in various classification problems where the feature training matrix has missingness. A widely used solution to this imputation problem is based on the lazy learning technique, $k$-nearest neighbor (kNN) approach. However, most of the previous work on missing data does not take into account the presence of the class label in the classification problem. Also, existing kNN imputation methods use variants of Minkowski distance as a measure of distance, which does not work well with heterogeneous data. In this paper, we propose a novel iterative kNN imputation technique based on class weighted grey distance between the missing datum and all the training data. Grey distance works well in heterogeneous data with missing instances. The distance is weighted by Mutual Information (MI) which is a measure of feature relevance between the features and the class label. This ensures that the imputation of the training data is directed towards improving classification performance. This class weighted grey kNN imputation algorithm demonstrates improved performance when compared to other kNN imputation algorithms, as well as standard imputation algorithms such as MICE and missForest, in imputation and classification problems. These problems are based on simulated scenarios and UCI datasets with various rates of missingness.

A meta-algorithm for classification using random recursive tree ensembles: A high energy physics application Machine Learning

The aim of this work is to propose a meta-algorithm for automatic classification in the presence of discrete binary classes. Classifier learning in the presence of overlapping class distributions is a challenging problem in machine learning. Overlapping classes are described by the presence of ambiguous areas in the feature space with a high density of points belonging to both classes. This often occurs in real-world datasets, one such example is numeric data denoting properties of particle decays derived from high-energy accelerators like the Large Hadron Collider (LHC). A significant body of research targeting the class overlap problem use ensemble classifiers to boost the performance of algorithms by using them iteratively in multiple stages or using multiple copies of the same model on different subsets of the input training data. The former is called boosting and the latter is called bagging. The algorithm proposed in this thesis targets a challenging classification problem in high energy physics - that of improving the statistical significance of the Higgs discovery. The underlying dataset used to train the algorithm is experimental data built from the official ATLAS full-detector simulation with Higgs events (signal) mixed with different background events (background) that closely mimic the statistical properties of the signal generating class overlap. The algorithm proposed is a variant of the classical boosted decision tree which is known to be one of the most successful analysis techniques in experimental physics. The algorithm utilizes a unified framework that combines two meta-learning techniques - bagging and boosting. The results show that this combination only works in the presence of a randomization trick in the base learners.

The Application of Machine Learning Techniques for Predicting Results in Team Sport: A Review Machine Learning

Over the past two decades, Machine Learning (ML) techniques have been increasingly utilized for the purpose of predicting outcomes in sport. In this paper, we provide a review of studies that have used ML for predicting results in team sport, covering studies from 1996 to 2019. We sought to answer five key research questions while extensively surveying papers in this field. This paper offers insights into which ML algorithms have tended to be used in this field, as well as those that are beginning to emerge with successful outcomes. Our research highlights defining characteristics of successful studies and identifies robust strategies for evaluating accuracy results in this application domain. Our study considers accuracies that have been achieved across different sports and explores the notion that outcomes of some team sports could be inherently more difficult to predict than others. Finally, our study uncovers common themes of future research directions across all surveyed papers, looking for gaps and opportunities, while proposing recommendations for future researchers in this domain.

An in-depth guide to supervised machine learning classification


In supervised learning, algorithms learn from labeled data. After understanding the data, the algorithm determines which label should be given to new data by associating patterns to the unlabeled new data. Supervised learning can be divided into two categories: classification and regression. Some examples of classification include spam detection, churn prediction, sentiment analysis, dog breed detection and so on. Some examples of regression include house price prediction, stock price prediction, height-weight prediction and so on.

The Study of Machine Learning Models in Predicting the Intention of Adolescents to Smoke Cigarettes Machine Learning

The use of electronic cigarette (e-cigarette) is increasing among adolescents. This is problematic since consuming nicotine at an early age can cause harmful effects in developing teenager's brain and health. Additionally, the use of e-cigarette has a possibility of leading to the use of cigarettes, which is more severe. There were many researches about e-cigarette and cigarette that mostly focused on finding and analyzing causes of smoking using conventional statistics. However, there is a lack of research on developing prediction models, which is more applicable to anti-smoking campaign, about e-cigarette and cigarette. In this paper, we research the prediction models that can be used to predict an individual e-cigarette user's (including non-e-cigarette users) intention to smoke cigarettes, so that one can be early informed about the risk of going down the path of smoking cigarettes. To construct the prediction models, five machine learning (ML) algorithms are exploited and tested for their accuracy in predicting the intention to smoke cigarettes among never smokers using data from the 2018 National Youth Tobacco Survey (NYTS). In our investigation, the Gradient Boosting Classifier, one of the prediction models, shows the highest accuracy out of all the other models. Also, with the best prediction model, we made a public website that enables users to input information to predict their intentions of smoking cigarettes.



A high-level machine learning library that allows you to build programs that learn from data using the PHP language. Machine learning is the process by which a computer program is able to progressively improve performance on a certain task through training and data without explicitly being programmed. There are two types of machine learning that Rubix supports out of the box, Supervised and Unsupervised. Machine learning projects typically begin with a question. For example, you might want to answer the question "who of my friends are most likely to stay married to their spouse?" One way to go about answering this question with machine learning would be to go out and ask a bunch of happily married and divorced couples the same set of questions about their partner and then use that data to build a model of what a successful marriage looks like. Later, you can use that model to make predictions based on the answers you get from your friends. Specifically, the answers you collect are ...

THORS: An Efficient Approach for Making Classifiers Cost-sensitive Machine Learning

In this paper, we propose an effective TH resholding method based on ORder S tatistic, called THORS, to convert an arbitrary scoring-type classifier, which can induce a continuous cumulative distribution function of the score, into a cost-sensitive one. The procedure, uses order statistic to find an optimal threshold for classification, requiring almost no knowledge of classifiers itself. Unlike common data-driven methods, we analytically show that THORS has theoretical guaranteed performance, theoretical bounds for the costs and lower time complexity. Coupled with empirical results on several real-world data sets, we argue that THORS is the preferred cost-sensitive technique. Key words: Classification; Cost-sensitive learning; Imbalanced data set; Statistical learning; Threshold adjusting.

Modeling Stated Preference for Mobility-on-Demand Transit: A Comparison of Machine Learning and Logit Models Artificial Intelligence

Logit models are usually applied when studying individual travel behavior, i.e., to predict travel mode choice and to gain behavioral insights on traveler preferences. Recently, some studies have applied machine learning to model travel mode choice and reported higher out-of-sample prediction accuracy than conventional logit models (e.g., multinomial logit). However, there has not been a comprehensive comparison between logit models and machine learning that covers both prediction and behavioral analysis. This paper aims at addressing this gap by examining the key differences in model development, evaluation, and behavioral interpretation between logit and machine-learning models for travel-mode choice modeling. To complement the theoretical discussions, we also empirically evaluated the two approaches on stated-preference survey data for a new type of transit system integrating high-frequency fixed routes and micro-transit. The results show that machine learning can produce significantly higher predictive accuracy than logit models and are better at capturing the nonlinear relationships between trip attributes and mode-choice outcomes. On the other hand, compared to the multinomial logit model, the best-performing machine-learning model, the random forest model, produces less reasonable behavioral outputs (i.e. marginal effects and elasticities) when they were computed from a standard approach. By introducing some behavioral constraints into the computation of behavioral outputs from a random forest model, however, we obtained better results that are somewhat comparable with the multinomial logit model. We believe that there is great potential in merging ideas from machine learning and conventional statistical methods to develop refined models for travel-behavior research and suggest some possible research directions.