Collaborating Authors


Future of AI Part 5: The Cutting Edge of AI


Edmond de Belamy is a Generative Adversarial Network portrait painting constructed in 2018 by Paris-based arts-collective Obvious and sold for $432,500 in Southebys in October 2018.

Artificial Intelligence vs. Machine Learning vs. Deep Learning: What's the Difference


In 2020, people benefit from artificial intelligence every day: music recommender systems, Google maps, Uber, and many more applications are powered with AI. One of popular Google search requests goes as follows: "are artificial intelligence and machine learning the same thing?". Let's clear things up: artificial intelligence (AI), machine learning (ML), and deep learning (DL) are three different things. The term artificial intelligence was first used in 1956, at a computer science conference in Dartmouth. AI described an attempt to model how the human brain works and, based on this knowledge, create more advanced computers. The scientists expected that to understand how the human mind works and digitalize it shouldn't take too long.

Artificial Intelligence: Reinforcement Learning in Python


Online Courses Udemy Complete guide to Reinforcement Learning, with Stock Trading and Online Advertising Applications Created by Lazy Programmer Team, Lazy Programmer Inc. English [Auto-generated], French [Auto-generated], 4 more Students also bought Bayesian Machine Learning in Python: A/B Testing Ensemble Machine Learning in Python: Random Forest, AdaBoost Machine Learning A-Z: Hands-On Python & R In Data Science Complete Python Developer in 2020: Zero to Mastery Natural Language Processing with Deep Learning in Python Preview this course GET COUPON CODE Description When people talk about artificial intelligence, they usually don't mean supervised and unsupervised machine learning. These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level. Reinforcement learning has recently become popular for doing all of that and more. Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn't been until recently that we've been able to observe first hand the amazing results that are possible. In 2016 we saw Google's AlphaGo beat the world Champion in Go.

Advanced AI: Deep Reinforcement Learning in Python


Online Courses Udemy Advanced AI: Deep Reinforcement Learning in Python, The Complete Guide to Mastering Artificial Intelligence using Deep Learning and Neural Networks Created by Lazy Programmer Team, Lazy Programmer Inc. English [Auto-generated], Indonesian [Auto-generated], 5 more Students also bought Deep Learning: Convolutional Neural Networks in Python Deep Learning: Recurrent Neural Networks in Python Unsupervised Machine Learning Hidden Markov Models in Python Bayesian Machine Learning in Python: A/B Testing Data Science: Supervised Machine Learning in Python Preview this course GET COUPON CODE Description This course is all about the application of deep learning and neural networks to reinforcement learning. If you've taken my first reinforcement learning class, then you know that reinforcement learning is on the bleeding edge of what we can do with AI. Specifically, the combination of deep learning with reinforcement learning has led to AlphaGo beating a world champion in the strategy game Go, it has led to self-driving cars, and it has led to machines that can play video games at a superhuman level. Reinforcement learning has been around since the 70s but none of this has been possible until now. The world is changing at a very fast pace.

Working towards explainable and data-efficient machine learning models via symbolic reasoning


In recent years, we have witnessed the success of modern machine learning (ML) models. Many of them have led to unprecedented breakthroughs in a wide range of applications, such as AlphaGo beating a world champion human player or the introduction of autonomous vehicles. There has been continuous effort, both from industry and academia, to extend such advances to solving real-life problems. However, converting a successful ML model into a real-world product is still a nontrivial task. Firstly, modern ML methods are known for being data-hungry and inefficient.

ASNets: Deep Learning for Generalised Planning

Journal of Artificial Intelligence Research

In this paper, we discuss the learning of generalised policies for probabilistic and classical planning problems using Action Schema Networks (ASNets). The ASNet is a neural network architecture that exploits the relational structure of (P)PDDL planning problems to learn a common set of weights that can be applied to any problem in a domain. By mimicking the actions chosen by a traditional, non-learning planner on a handful of small problems in a domain, ASNets are able to learn a generalised reactive policy that can quickly solve much larger instances from the domain. This work extends the ASNet architecture to make it more expressive, while still remaining invariant to a range of symmetries that exist in PPDDL problems. We also present a thorough experimental evaluation of ASNets, including a comparison with heuristic search planners on seven probabilistic and deterministic domains, an extended evaluation on over 18,000 Blocksworld instances, and an ablation study. Finally, we show that sparsity-inducing regularisation can produce ASNets that are compact enough for humans to understand, yielding insights into how the structure of ASNets allows them to generalise across a domain.

How to fix reinforcement learning


"Value functions are a core component of [RL] systems. The main idea is to to construct a single function approximator V(s; θ) that estimates the long-term reward from any state s, using parameters θ. In this paper we introduce universal value function approximators (UVFAs) V(s, g; θ) that generalise not just over states s but also over goals g." Here is a rigorous, mathematical formulation of RL that treats goals (the high-level objective of the skill to be learned, which should yield good rewards) as a fundamental and necessary input rather than something to be discovered from just the reward signal. The agent is told what it's supposed to do, just as is done in zero-shot learning and actual human learning. It has been 3 years since this was published, and how many papers have cited it since?

Meta-Learning in Neural Networks: A Survey Machine Learning

The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where a given task is solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many of the conventional challenges of deep learning, including data and computation bottlenecks, as well as the fundamental issue of generalization. In this survey we describe the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning, multi-task learning, and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning including few-shot learning, reinforcement learning and architecture search. Finally, we discuss outstanding challenges and promising areas for future research.

Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement Learning Machine Learning

Compressed sensing is applied to scanning transmission electron microscopy to decrease electron dose and scan time. However, established methods use static sampling strategies that do not adapt to samples. We have extended recurrent deterministic policy gradients to train deep LSTMs and differentiable neural computers to adaptively sample scan path segments. Recurrent agents cooperate with a convolutional generator to complete partial scans. We show that our approach outperforms established algorithms based on spiral scans, and we expect our results to be generalizable to other scan systems.