Goto

Collaborating Authors

Results


Towards Safer Self-Driving Through Great PAIN (Physically Adversarial Intelligent Networks)

arXiv.org Machine Learning

Automated vehicles' neural networks suffer from overfit, poor generalizability, and untrained edge cases due to limited data availability. Researchers synthesize randomized edge-case scenarios to assist in the training process, though simulation introduces potential for overfit to latent rules and features. Automating worst-case scenario generation could yield informative data for improving self driving. To this end, we introduce a "Physically Adversarial Intelligent Network" (PAIN), wherein self-driving vehicles interact aggressively in the CARLA simulation environment. We train two agents, a protagonist and an adversary, using dueling double deep Q networks (DDDQNs) with prioritized experience replay. The coupled networks alternately seek-to-collide and to avoid collisions such that the "defensive" avoidance algorithm increases the mean-time-to-failure and distance traveled under non-hostile operating conditions. The trained protagonist becomes more resilient to environmental uncertainty and less prone to corner case failures resulting in collisions than the agent trained without an adversary.


A Survey of End-to-End Driving: Architectures and Training Methods

arXiv.org Artificial Intelligence

Autonomous driving is of great interest to industry and academia alike. The use of machine learning approaches for autonomous driving has long been studied, but mostly in the context of perception. In this paper we take a deeper look on the so called end-to-end approaches for autonomous driving, where the entire driving pipeline is replaced with a single neural network. We review the learning methods, input and output modalities, network architectures and evaluation schemes in end-to-end driving literature. Interpretability and safety are discussed separately, as they remain challenging for this approach. Beyond providing a comprehensive overview of existing methods, we conclude the review with an architecture that combines the most promising elements of the end-to-end autonomous driving systems.


Deep Neural Network Perception Models and Robust Autonomous Driving Systems

arXiv.org Machine Learning

This paper analyzes the robustness of deep learning models in autonomous driving applications and discusses the practical solutions to address that.


Techniques for Interpretable Machine Learning

Communications of the ACM

Machine learning is progressing at an astounding rate, powered by complex models such as ensemble models and deep neural networks (DNNs). These models have a wide range of real-world applications, such as movie recommendations of Netflix, neural machine translation of Google, and speech recognition of Amazon Alexa. Despite the successes, machine learning has its own limitations and drawbacks. The most significant one is the lack of transparency behind their behaviors, which leaves users with little understanding of how particular decisions are made by these models. Consider, for instance, an advanced self-driving car equipped with various machine learning algorithms does not brake or decelerate when confronting a stopped firetruck. This unexpected behavior may frustrate and confuse users, making them wonder why. Even worse, the wrong decisions could cause severe consequences if the car is driving at highway speeds and might ultimately crash into the firetruck. The concerns about the black-box nature of complex models have hampered their further applications in our society, especially in those critical decision-making domains like self-driving cars. Interpretable machine learning would be an effective tool to mitigate these problems. It gives machine learning models the ability to explain or to present their behaviors in understandable terms to humans,10 which is called interpretability or explainability and we use them interchangeably in this article. Interpretability would be an indispensable part for machine learning models in order to better serve human beings and bring benefits to society. For end users, explanation will increase their trust and encourage them to adopt machine learning systems. From the perspective of machine learning system developers and researchers, the provided explanation can help them better understand the problem, the data and why a model might fail, and eventually increase the system safety. Thus, there is a growing interest among the academic and industrial community in interpreting machine learning models and gaining insights into their working mechanisms.


Collision Avoidance in Pedestrian-Rich Environments with Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Collision avoidance algorithms are essential for safe and efficient robot operation among pedestrians. This work proposes using deep reinforcement (RL) learning as a framework to model the complex interactions and cooperation with nearby, decision-making agents (e.g., pedestrians, other robots). Existing RL-based works assume homogeneity of agent policies, use specific motion models over short timescales, or lack a mechanism to consider measurements taken with a large number (possibly varying) of nearby agents. Therefore, this work develops an algorithm that learns collision avoidance among a variety of types of non-communicating, dynamic agents without assuming they follow any particular behavior rules. It extends our previous work by introducing a strategy using Long Short-Term Memory (LSTM) that enables the algorithm to use observations of an arbitrary number of other agents, instead of a small, fixed number of neighbors. The proposed algorithm is shown to outperform a classical collision avoidance algorithm, another deep RL-based algorithm, and scales with the number of agents better (fewer collisions, shorter time to goal) than our previously published learning-based approach. Analysis of the LSTM provides insights into how observations of nearby agents affect the hidden state and quantifies the performance impact of various agent ordering heuristics. The learned policy generalizes to several applications beyond the training scenarios: formation control (arrangement into letters), an implementation on a fleet of four multirotors, and an implementation on a fully autonomous robotic vehicle capable of traveling at human walking speed among pedestrians.


Fearing a future of artificial intelligence haves and have-nots

#artificialintelligence

Each big step of progress in computing -- from mainframe to personal computer to internet to smartphone -- has opened opportunities for more people to invent on the digital frontier. But there is growing concern that trend is being reversed at tech's new leading edge, artificial intelligence. Computer scientists say AI research is becoming increasingly expensive, requiring complex calculations done by giant data centers, leaving fewer people with easy access to the computing firepower necessary to develop the technology behind futuristic products like self-driving cars or digital assistants that can see, talk and reason. The danger, they say, is that pioneering artificial intelligence research will be a field of haves and have-nots. And the haves will be mainly a few big tech companies like Google, Microsoft, Amazon and Facebook, which each spend billions a year building out their data centers.


Machine Learning Software Engineer, Up to $250k Job in Austin, TX at Deep Learning / AI Startup

#artificialintelligence

There has never been a better time to indulge in the science and technology of Artificial Intelligence. We are a group of people who love what we do. Our founders have a wealth of experience working on various ground-breaking products including self driving cars, AWS AI services, GMail, Google Docs and flash storage systems. Backgrounds include key roles at Google, AWS, Uber, founding team of a startup which had a billion dollar IPO, and degrees from IIT, Stanford and Dartmouth. We are looking for talented backend software engineers, machine learning software engineers and research scientists to be part of the founding team.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Machine Learning at the Network Edge: A Survey

arXiv.org Machine Learning

Devices comprising the Internet of Things, such as sensors and small cameras, usually have small memories and limited computational power. The proliferation of such resource-constrained devices in recent years has led to the generation of large quantities of data. These data-producing devices are appealing targets for machine learning applications but struggle to run machine learning algorithms due to their limited computing capability. They typically offload input data to external computing systems (such as cloud servers) for further processing. The results of the machine learning computations are communicated back to the resource-scarce devices, but this worsens latency, leads to increased communication costs, and adds to privacy concerns. Therefore, efforts have been made to place additional computing devices at the edge of the network, i.e close to the IoT devices where the data is generated. Deploying machine learning systems on such edge devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning has been deployed at the edge of computer networks.


Machine Learning Testing: Survey, Landscapes and Horizons

arXiv.org Artificial Intelligence

This paper provides a comprehensive survey of Machine Learning Testing (ML testing) research. It covers 128 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framework), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.