Goto

Collaborating Authors

Results


Artificial Intelligence - CamRojud

#artificialintelligence

Every solution depends on computational infrastructure. On the technology layer, the system designer makes decisions about how and where to store datasets, what kind of computing device is needed to train and serve models, and the software stack it relies on, e.g., programming languages, frameworks, and other dependencies.


Hyun Kim, CEO and Co-Founder, Superb AI – Interview Series

#artificialintelligence

Huyn Kim is the CEO and Co-Founder of Superb AI, a company that provides a new generation machine learning data platform to AI teams so that they can build better AI in less time. The Superb AI Suite is an enterprise SaaS platform built to help ML engineers, product teams, researchers and data annotators create efficient training data workflows. What initially attracted you to the field of AI, Data Science and Robotics? As an undergraduate majoring in Biomedical Engineering at Duke, I was passionate about genetics and how we can engineer our DNA to cure diseases or create genetically engineered organisms. I remember one wet-lab experiment distinctly that kept failing for like 6 months straight. The most frustrating part of it was that there was a lot of repetitive manual work, and in hindsight that was probably the root of some many potential errors.


The Data Science Course 2020: Complete Data Science Bootcamp

#artificialintelligence

Online Courses Udemy The Data Science Course 2020: Complete Data Science Bootcamp, Complete Data Science Training: Mathematics, Statistics, Python, Advanced Statistics in Python, Machine & Deep Learning Created by 365 Careers, 365 Careers Team English [Auto-generated], French [Auto-generated], 6 more Students also bought Complete Python Bootcamp: Go from zero to hero in Python 3 Statistics for Data Science and Business Analysis Python for Data Science and Machine Learning Bootcamp Intro to Data Science: Your Step-by-Step Guide To Starting Data Analysis Excel for Beginners: Statistical Data Analysis Preview this course - GET COUPON CODE Description The Problem Data scientist is one of the best suited professions to thrive this century. It is digital, programming-oriented, and analytical. Therefore, it comes as no surprise that the demand for data scientists has been surging in the job marketplace. However, supply has been very limited. It is difficult to acquire the skills necessary to be hired as a data scientist.


Computer vision: Why it's hard to compare AI and human perception

#artificialintelligence

This article is part of our reviews of AI research papers, a series of posts that explore the latest findings in artificial intelligence. Those are terms you hear a lot from companies developing artificial intelligence systems, whether it's facial recognition, object detection, or question answering. And to their credit, the recent years have seen many great products powered by AI algorithms, mostly thanks to advances in machine learning and deep learning. But many of these comparisons only take into account the end-result of testing the deep learning algorithms on limited data sets. This approach can create false expectations about AI systems and yield dangerous results when they are entrusted with critical tasks.


How to choose a cloud machine learning platform

#artificialintelligence

In order to create effective machine learning and deep learning models, you need copious amounts of data, a way to clean the data and perform feature engineering on it, and a way to train models on your data in a reasonable amount of time. Then you need a way to deploy your models, monitor them for drift over time, and retrain them as needed. You can do all of that on-premises if you have invested in compute resources and accelerators such as GPUs, but you may find that if your resources are adequate, they are also idle much of the time. On the other hand, it can sometimes be more cost-effective to run the entire pipeline in the cloud, using large amounts of compute resources and accelerators as needed, and then releasing them. The major cloud providers -- and a number of minor clouds too -- have put significant effort into building out their machine learning platforms to support the complete machine learning lifecycle, from planning a project to maintaining a model in production.


Artificial Intelligence: Trends & Applications To Watch In 2020 - Simpliv Blog

#artificialintelligence

For movie buffs, the work that the factory machines do in Charlie Chaplin's 1936 classic, Modern Times, may have seemed too futuristic for its time. Fast forward eight decades, and the colossal changes that Artificial Intelligence is catalyzing around us will most likely give the same impression to our future generations. There is one crucial difference though: while those advancements were in movies, what we are seeing today are real. A question that seems to be on everyone's mind is, What is Artificial Intelligence? The pace at which AI is moving, as well as the breadth and scope of the areas it encompasses, ensure that it is going to change our lives beyond the normal.


Simultaneous clustering and representation learning

AIHub

The success of deep learning over the last decade, particularly in computer vision, has depended greatly on large training data sets. Even though progress in this area boosted the performance of many tasks such as object detection, recognition, and segmentation, the main bottleneck for future improvement is more labeled data. Self-supervised learning is among the best alternatives for learning useful representations from the data. In this article, we will briefly review the self-supervised learning methods in the literature and discuss the findings of a recent self-supervised learning paper from ICLR 2020 [14]. We may assume that most learning problems can be tackled by having clean labeling and more data obtained in an unsupervised way.



How Deep Learning Can Keep You Safe with Real-Time Crime Alerts

#artificialintelligence

Citizen scans thousands of public first responder radio frequencies 24 hours a day in major cities across the US. The collected information is used to provide real-time safety alerts about incidents like fires, robberies, and missing persons to more than 5M users. Having humans listen to 1000 hours of audio daily made it very challenging for the company to launch new cities. To continue scaling, we built ML models that could discover critical safety incidents from audio. Our custom software-defined radios (SDRs) capture large swathes of radio frequency (RF) and create optimized audio clips that are sent to an ML model to flag relevant clips.


Book Review: Deep Learning with TensorFlow 2 and Keras - insideBIGDATA

#artificialintelligence

If you're a data scientist who has been wanting to break into the deep learning realm, here is a great learning resource that can guide you through this journey. It's pretty much an all-inclusive resource that includes all the popular methodologies upon which deep learning depends: CNNs, RNNs, RL, GANs, and much more. The glue that makes it all work is represented by the two most popular frameworks for deep learning pratcitioners, TensorFlow and Keras. This book was a real team effort by a group of consummate professionals: Antonio Gulli (Engineering Director for the Office of the CTO at Google Cloud), Amita Kapoor (Associate Professor in the Department of Electronics at the University of Delhi), and Sujit Pal (Technology Research Director at Elsevier Labs). The resulting text, Deep Learning with TensorFlow 2 and Keras, Second Edition, is an obvious example of what happens when you enlist talented people to write a quality learning resource. I've already recommended this book to my newbie data science students, as I enjoy providing them with good tips for ensuring their success in the field.